IIT JAM

CHEMISTRY SOLVED SAMPLE PAPER

* DETAILED SOLUTIONS
* PROJECTED IIT JAM RANK

IIT JAM-CY

CHEMISTRY

(FMTP)

Attempt ALL the $\mathbf{6 0}$ questions.
There are a total of 60 questions carrying 100 marks.
Section-A contains a total of 30 Multiple Choice Questions (MCQ). Q. 1 - Q. 10 carry 1 mark each and Questi ons Q. 11 - Q. 30 carry 2 marks each.

Section-B contains a total of 10 Multiple Select Questions (MSQ). Questions Q. 31 - Q. 40 belong to this section and carry 2 marks each with a total of 20 marks.

Section-C contains a total of 20 Numerical Answer Type (NAT) questions. Questions Q. $41-\mathrm{Q} .60$ belong to this section and carry a total of 30 marks. Q. 41 - Q. 50 carry 1 mark each and Questions Q. 51 - Q. 60 carry 2 marks each. In Section-A for all 1 mark questions, $1 / 3$ marks will be deducted for each wrong answer. For all 2 marks questions, 2/3 marks will be deducted for each wrong answer. In Section-B (MSQ), there is NO NEGATIVE and NO PARTIAL marking provisions. There is NO NEGATIVE marking in Section-C (NAT) as well.

Time : 3 Hours \square

SECTION-A (QUESTIONS-1-30) MULTIPLE CHOICE QUESIONS (MCQs)

1. Which of the following is an oxidizing agent?
(A) $\mathrm{Mn}(\mathrm{CO})_{5}$
(B) $\mathrm{Fe}(\mathrm{CO})_{5}$
(C) $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$
(D) $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$
2. The species having bond order different from that in CO is
(A) NO^{-}
(B) NO^{+}
(C) CN^{-}
(D) N_{2}
3. $(\mathrm{Me})_{2} \mathrm{SiCl}_{2}$ on hydrolysis will produce
(A) $(\mathrm{Me})_{2} \mathrm{Si}(\mathrm{OH})_{2}$
(B) $(\mathrm{Me})_{2} \mathrm{Si}=\mathrm{O}$
(C) $-\left[-\mathrm{O}-(\mathrm{Me})_{2} \mathrm{Si}-\mathrm{O}-\right]_{\mathrm{n}}-$
(D) $\mathrm{Me}_{2} \mathrm{SiCl}(\mathrm{OH})$
4. The correct matching is

Phenols

(ii)

(iii)

(9)
(B) i-(9), ii-(10), iii-(7), iv-(4)
(A) i-(9), ii-(7), iii-(4), iv-(10)
(D) $\mathrm{i}-(10), \mathrm{ii}-(7)$, iii-(4), iv-(9)
5. Two forms of D-glucopyranose, are called.
(A) Enantiomers (B) Anomers
(C) Epimers
(D) Diastereomers
6. Among the following compounds, the most acidic is
(A) p-nitrophenol
(B) p-hydroxybenzoic acid
(C) o-hydroxybenzoic acid
(D) p-toluic acid

7. If ' a ' is the edge length of the unit cell of an atomic crystal having face centred cubic lattice. Then what is the distance of closet approach between the two atoms in the crystal ?
(A) $\frac{1}{2}(\sqrt{2 a})$
(B) $\frac{1}{2}(\sqrt{4 a})$
(C) $\frac{1}{4}(\sqrt{2 a})$
(D) $2 \sqrt{2 a}$
8. The value of compression factor (Z) for the gas represented by an equation $P=\frac{n R T}{V-n b}$; if $V_{m}($ molar volume $)=11 b$ then Z will be:
(A) 1.1
(B) 1.2
(C) 1.4
(D) 1.6
9. The temperature of 54 g of water is raised from $15^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ at constant pressure. The change in the enthalpy of the system (given that $\mathrm{C}_{\mathrm{p} . \mathrm{m}}$ of water $=75 \mathrm{JK}^{-}$ ${ }^{1} \mathrm{~mol}^{-1}$) is
(A) 4.5 kJ
(B) 13.5 kJ
(C) 9.0 kJ
(D) 18.0 kJ
10. For the reaction :
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$,
at a given temperature, the equilibrium amount of $\mathrm{CO}_{2}(\mathrm{~g})$ can be increased by
(A) adding a suitable catalyst
(B) adding an inert gas
(C) decreasing the volume of the container
(D) increasing the amount of $\mathrm{CO}(\mathrm{g})$
11. The percentage transmittance of an aqueous solution of disodium fumarate at 250 nm and $25^{\circ} \mathrm{C}$ in 19.2% for a $5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ solution in a 1 cm cell. The molar absorption coefficient, ε is
(A) $1.43 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$
(B) $1.42 \times 10^{-5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$
(C) $1.43 \times 10^{-3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$
(D) $1.43 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$
12. What is crystal field splitting for cube ($\Delta_{\text {cubic }}$)?
(A) $\frac{4}{9} \Delta_{t}$
(B) $\frac{8}{9} \Delta_{0}$
(C) $\frac{\Delta_{\mathrm{t}}}{2}$
(D) $\frac{4}{9} \Delta_{0}$
13. For the term symbol ${ }^{3} \mathrm{D}$ the value of J will be \rightarrow
(A) ${ }^{3} \mathrm{D}_{\frac{1}{2}}$
(B) ${ }^{3} \mathrm{D}_{1}{ }^{3} \mathrm{D}_{2}{ }^{3} \mathrm{D}_{3}$
(C) ${ }^{3} D_{\frac{1}{2}},{ }^{3} D_{\frac{3}{2}}$
(D) ${ }^{3} D_{0}$
14. The correct shape of $\left[\mathrm{TeF}_{5}\right]^{-}$ion on the basis of VSEPR theory is
(A) Trigonal bipyramidal
(B) Square pyramidal
(C) Pentagonal planar
(D) See-saw
15. The numbers of P-S and P-P bonds in the compound $P_{4} S_{3}$ are, respectively,
(A) 6 and 3
(B) 4 and 3
(C) 3 and 6
(D) 6 and 2
16. The complex that shows orbital contribution to the magnetic moment, is
(A) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(B) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(C) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(D) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
17. The major product of the following reaction is

(A)

(B)

(C)

(D)

18. The major product formed in the following reaction is

(C)

(D)

19.

(A)

(B)

(C)

(D)

20. At pH 10, tryptophan exists as
(A)

(B)

(C)

(D)

21. The major product formed in the following reaction sequence is

(ii) $\mathrm{Cp}_{2} \mathrm{Ti}-\mathrm{Cl}$
(iii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(A)

(B)

(C)

(D)

22. In the $U V$-visible absorption spectrum of an α, β-unsaturated carbonyl compound, with increasing solvent polarity,
(A) $n-\pi^{*}$ transitions undergo hypsochromic shift, $\pi-\pi^{*}$ undergo bathochromic shift
(B) $n-\pi^{*}$ transitions undergo bathochromic shift, $\pi-\pi^{*}$ undergo hypsochromic shift
(C) both $n-\pi^{*}$ and $\pi-\pi^{*}$ transitions undergo bathochromic shift
(D) both $\mathrm{n}-\pi^{*}$ and $\pi-\pi^{*}$ transitions undergo hypsochromic shift
23. AgNO_{3} (aq.) was added to an aqueous KCl solution gradually and the conductivity of the solution was measured. The plot of conductance (Λ) versus the volume of AgNO_{3} is
(P)

(Q)

(R)

(S)

(A) (P)
(B) (Q)
(C) (R)
(D) (S)
24. A partially dried clay mineral contains 8% water. The original sample contained 12% water and 45% silica. The $\%$ of silica in partially dried sample is -
(A) 50%
(B) 49%
(C) 55%
(D) 47%
25. For the molecule HCl , the harmonic frequency $\omega_{\mathrm{e}}=2330 \mathrm{~cm}^{-1}$ and anharmonic constant is $56 \mathrm{~cm}^{-1}$. Calculate the energy of first two vibrational levels and determine the spacing between them.
(A) $1015 \mathrm{~cm}^{-1}, 3215 \mathrm{~cm}^{-1}, 2200 \mathrm{~cm}^{-1}$
(B) $1151 \mathrm{~cm}^{-1}, 3425 \mathrm{~cm}^{-1}, 2274 \mathrm{~cm}^{-1}$
(C) $1099 \mathrm{~cm}^{-1}, 3325 \mathrm{~cm}^{-1}, 2226 \mathrm{~cm}^{-1}$
(D) $1105 \mathrm{~cm}^{-1}, 3399 \mathrm{~cm}^{-1}, 2294 \mathrm{~cm}^{-1}$
26. Consider the following reaction of methane with molecular chlorine -

$$
\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}_{(\mathrm{g})}+\mathrm{HCl}_{(\mathrm{g}}
$$

The mechanism of this reaction is -

$$
\begin{aligned}
& \mathrm{Cl}_{2} \xrightarrow{\mathrm{~K}_{1}} 2 \mathrm{Cl}^{\bullet} \\
& \mathrm{Cl}^{\bullet}+\mathrm{CH}_{4} \xrightarrow{\mathrm{~K}_{2}} \mathrm{HCl}+\mathrm{CH}_{3}^{\bullet}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{CH}_{3} \cdot+\mathrm{Cl}_{2} \xrightarrow{\mathrm{~K}_{3}} \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}^{-} \\
& \mathrm{Cl}+\mathrm{Cl} \stackrel{ }{\mathrm{~K}_{4}} \mathrm{Cl}_{2}
\end{aligned}
$$

The rate law of this reaction is -
(A) $\mathrm{R}=\mathrm{K}_{2}\left(\frac{\mathrm{~K}_{1}}{\mathrm{~K}_{4}}\right)^{1 / 2}\left[\mathrm{CH}_{4}\right]\left[\mathrm{Cl}_{2}\right]^{1 / 2}$
(B) $\mathrm{R}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{4}}\left[\mathrm{CH}_{4}\right]\left[\mathrm{Cl}_{2}\right]^{1 / 2}$
(C) $\mathrm{R}=\mathrm{K}_{2}\left(\frac{\mathrm{~K}_{1}}{\mathrm{~K}_{4}}\right)^{1 / 2}\left[\mathrm{CH}_{4}\right]^{1 / 2}\left[\mathrm{Cl}_{2}\right]^{1 / 2}$
(D) $\mathrm{R}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{4}}\left[\mathrm{CH}_{4}\right]^{1 / 2}\left[\mathrm{Cl}_{2}\right]^{1 / 2}$
27. The dissociation constant of aniline, acetic acid and water at $25^{\circ} \mathrm{C}$ are $3.83 \times 10^{-10}, 1.75 \times 10^{-5}$ and 1.008×10^{-14}. The percentage hydrolysis of aniline acetate in a decimolar solution is -
(A) 17.43
(B) 29.25
(C) 54.95
(D) 66.17
28. A molecule has a ground state and two excited electronic energy levels, all of which are nondegenerate with the energies : $E_{0}=0, E_{1}=1 \times 10^{-20} \mathrm{~J}$ and $E_{2}=3 \times 10^{-20} \mathrm{~J}$. If P_{0}, P_{1} and P_{3} are fractions of molecules occupied in ground, first and second excited states, respectively, at 298 K , then, $\mathrm{P}_{0}: \mathrm{P}_{1}: \mathrm{P}_{2}=$?
(A) $0.919: 0.081: 0.001$
(B) $0.900: 0.098: 0.002$
(C) $0.666: 0.333: 0.111$
(D) $0.880: 0.088: 0.0228$.
29. While carrying out the titration of a weak acid with a strong base, the pH of the solution is measured as a function of the added titrant. The result is shown below.

Three pH values have been marked, corresponding to 3 different volumes of the added base. V_{0} corresponds to the 'end point' or the 'stoichiometric point' of neutralization. What is the pKa of the acid?
(A) pH_{1}
(B) pH_{2}
(C) pH_{3}
(D) intermediate of $\mathrm{pH}_{2} \& \mathrm{pH}_{3}$
30. Consider the following sequential reaction scheme :-

$$
\mathrm{A} \xrightarrow{\mathrm{~K}_{\mathrm{A}}} \mathrm{I} \xrightarrow{\mathrm{~K}_{1}} \mathrm{p}
$$

Assuming that only reactant A is present at $t=0$, what is the expected time dependence of $[p]$ using steady state approximate?
(A) $[p]=[A] \circ(1+e-k A t)$
(B) $[p]=[A] \circ\left[1-e^{+k A t}\right]$
(C) $[\mathrm{p}]=[\mathrm{A}] \circ\left[1-e-\mathrm{K}^{\mathrm{KA}}\right]$
(D) $[\mathrm{p}]=[\mathrm{A}] \circ\left[1+\mathrm{e}^{+\mathrm{kAt}}\right]$

SECTION-B (QUESTIONS-31-40)MULTIPLE SELECT QUESTIONS (MSQs)

31. The correct statements about the reaction of X and Y with NaNH_{2} are :
(X)

(Y)

(A) X reacts faster than Y
(B) Y reacts faster than X
(C) X and Y behave as Lewis acis
(D) X is stronger Bronsted acid than Y
32. The correct statements about conformations X and Y of 2-butanone are
(X)

(A) X is more stable than Y
(B) Y is more stable than X
(C) Methyl groups in X are anti
(D) Methyl groups in Y are gauche
33. Select the options with correct orders regarding IR frequencies.
(A) (I)

< (II)

(B) (I)

< (II)

(C)

(D) (I)
 (II)

34. The correct dipole moment order are :
(A)

(B)

(D) HOOC

35. For $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ the incorrect choice is:
(A) $\mathrm{H}_{3} \mathrm{PO}_{3}$ is dibasic and reducing
(B) $\mathrm{H}_{3} \mathrm{PO}_{3}$ is dibasic and non-reducing
(C) $\mathrm{H}_{3} \mathrm{PO}_{4}$ is tribasic and reducing
(D) $\mathrm{H}_{3} \mathrm{PO}_{3}$ is tribasic and non-reducing
36. Which of the following compounds show optical isomerism?
(A) Cis-[co $\left.\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$
(B) trans-[co(en) $\left.{ }_{2} \mathrm{Cl}_{2}\right]$
(C) Cis-[Co(en) $\left.{ }_{2} \mathrm{Cl}_{2}\right]$
(D) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
37. Which of the following are staked layer Polymers?
(A) Boron Nitride
(B) Graphite

38. Which of the following solutions will not have pH close to 1.0 ?
(A) 100 mL of $(\mathrm{M} / 10) \mathrm{HCl}+100 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
(B) 55 mL of $(\mathrm{M} / 10) \mathrm{HCl}+45 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
(C) 10 mL of $(\mathrm{M} / 10) \mathrm{HCl}+90 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
(D) 75 mL of $(\mathrm{M} / 5) \mathrm{HCl}+25 \mathrm{~mL}$ of $(\mathrm{M} / 5) \mathrm{NaOH}$
39. For the given cell, at 298 K

Pt | Q, $\mathrm{QH}_{2}, \mathrm{H}^{+}| | 1 \mathrm{M} \mathrm{KCl}\left|\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})\right| \mathrm{Hg}(\mathrm{I}) \mid \mathrm{Pt}$ the emf will be \qquad when $\mathrm{pH}=5.0$ and the pH will be \qquad when $E_{\text {cell }}=0$.
(A) $\mathrm{E}_{\text {cell }}=-0.1239 \mathrm{~V}$
(B) $\mathrm{E}_{\text {cell }}=0.1239 \mathrm{~V}$
(C) $\mathrm{pH}=6.1$
(D) $\mathrm{pH}=7.1$
40. When an X-ray powder pattern of crystalline copper is obtained using X-rays from copper target (the wavelength of the K_{α} - line is 154.05 pm), reflections are found at $21.65^{\circ}, 25.21^{\circ}, 37.06^{\circ}, 47.58^{\circ}$ and other angles. The length of a side of the unit cell and the radius of copper atom will be \qquad and \qquad
respectively.
(A) $\mathrm{a}=363.2 \mathrm{pm}$
(B) $a=264.2 \mathrm{pm}$
(C) $\mathrm{r}=128.3 \mathrm{pm}$
(D) $r=96.2 \mathrm{pm}$

SECTION-C (QUESTIONS-41-60)NUMERICAL ANSWER TYPE (NAT)

41. What is the standard enthalpy of a reaction (in $\mathrm{kJ} \mathrm{mol}^{-1}$) for which the equilibrium constant is doubled when the temperature is increased by 10 K at 298 K ?
42. A zinc rod is placed in 0.1 M solution of zinc sulphate at $25^{\circ} \mathrm{C}$. Assuming that the salt is dissociated to the extent of 95 percent at this dilution, find out the potential of the electrode at this temperature (in V)?
43. For the following equation of state
$P=\frac{R T}{V_{m}}-\frac{B}{V_{m}^{2}}+\frac{C}{V_{m}^{3}} ; B$ and C are constants. What will be the value of critical compression factor $\left(Z_{C}\right)$?
44. For the reaction, $A+B \rightleftharpoons 2 C ; 2$ mole of A and 3 mole of B are allowed to react. If the equilibrium constant is 4 at $400^{\circ} \mathrm{C}$, what will be the mole of C at equilibrium ?
45. What is the number of lone pair(s) of electrons in XeOF_{4} ?
46. How many fundamental bands are observed in the infrared spectrum of benzene?
47. The difference in the oxidation numbers of the two types of sulphur atoms in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is
48. A decapeptide (Mol. Wt. 796) on complete hydrolysis gives glycine (Mol. Wt. 75), alanine and phenylalanine.

Glycine contributes 47.0% to the total weight of the hydrolysed products. The number of glycine units present
in the decapeptide is \qquad .
49. The total number of alkenes possible by dehydrobromination of 3-bromo-3cyclopentylhexane using alcoholic KOH is \qquad .
50. Total number of vibrations in allyl bromide are?
51. The total number of stereoisomers (Geometrical + Optical) possible for 1, 3dichlorocyclohexane are,

52. The transmittance of a solution having 2 M concentration is 20% in a 1 mm cell. Then molar absorptivity of solution (ε) is \qquad .
53. The molar conductance at infinite dilution of $\mathrm{HCl}, \mathrm{NaCl}$ and NaZ (Sodium Crotonate) are $425 \times 10^{-4}, 125 \times 10^{-4}$ and $80 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$, respectively. The specific conductance of 0.001 M aqueous solution of crotonic acid (HZ) is $3.8 \times 10^{-3} \mathrm{Sm}^{-1}$. What is the degree of dissociation?
54. A 1000 mL sample of a gas at $-73^{\circ} \mathrm{C}$ and 2 atmosphere is heated to $123^{\circ} \mathrm{C}$ and the pressure is reduced to 0.5 atmosphere. What will be the final volume (in ml)?
55. The vapour-pressure of ethanol and methanol are 44.5 and 88.7 mm Hg respectively. An ideal solution is formed at the same temperature by mixing 60 g of ethanol with 40 g of methanol. Calculate the total vapour-pressure of the solution (in mm of Hg).
56. At $518^{\circ} \mathrm{C}$, the half life for the decomposition of a sample of gaseous acetaldehyde (ethanol) initially at 363 Torr was 410s. When the pressure was 169 Torr, the half life was 880 s . Determine the order of the reaction.

57 Calculate $J_{\text {max }}$ for a rigid diatomic molecule for which at 300 K , the rotational constant is $1.566 \mathrm{~cm}^{-1}$.
58. In metal hydrides, the reference absorbs at 1200 Hz higher frequency than the metal Hydride. Calculate the chemical shift of metal Hydride at 400 MHz .
59. What is the isoelectric point of the given structure ? $(\mathrm{pka}=5.7, \mathrm{pkb}=9.3)$

60. A monochromatic radiation is incident in a solution of .05 molar concentration of substance the intensity of radiation is reduced to $\frac{1}{10}$ of the initial value after passing through 20 cm length of the solution. Calculate the molar extinction coefficient (ε) of the substance (in mole liter cm^{-1}).

Ques	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Ans	A	A	C	C	B	C	A	A	B	D
Ques	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans	D	B	D	B	A	C	A	A	B	A
Ques	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$
Ans	C	A	D	D	B	A	C	A	A	C
Ques	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$
Ans	A, D	D	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	$\mathrm{A}, \mathrm{B}, \mathrm{D}$	$\mathrm{B}, \mathrm{C}, \mathrm{D}$	C, D	A, B	$\mathrm{A}, \mathrm{B}, \mathrm{C}$	A, D	A, C
Ques	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$
Ans	53	-0.79	0.3333	2.4	1	30	5	6	5	21
Ques	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$
Ans	3	3.495	0.10	8000	65.71	2	8	13	5.2	1

HINTS \& SOLUTION

1.(A) $\mathrm{Mn}(\mathrm{CO})_{5}$ [less stable (O.A.)] $+\mathrm{e}^{-} \rightarrow\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}[$more stable, as EAN of $\mathrm{Mn}=$ 36 (Kr)]
2.(A) The bond order of $\mathrm{CO}=3$. $\mathrm{NO}^{+}, \mathrm{CN}^{-}$and N_{2} are isoelectronic with CO , have the same bond orders as CO . NO ($16 \mathrm{e}^{-}$) has bond order of 2 .
3.(C) Silicon due to its large size does not form π-bond with oxygen. The hydrolysis products of $(\mathrm{Me})_{2} \mathrm{SiCl}_{2}$ are polymeric silicones.
4.(C) pK_{a} order is

5.(B) D-glucopyranose is cyclic form of glucose. Around C-1 (Newly formed chiral centre, due to cycle formation) two isomers are observed. They are called as α and β-Anomers.
6.(C) Due to ortho effect o-hydroxybenzoic acid is the strongest acid and correct order of decreasing K_{a} is.
7.(A) For fcc $\rightarrow \sqrt{2 \mathrm{a}}=4 \mathrm{r}=2 \mathrm{~d}$
so $d=\frac{\sqrt{2 a}}{2}$
8.(A) $V_{m}=\frac{V}{n} \quad \& \quad Z=\frac{P V_{m}}{R T} \quad \& \quad V_{m}=11 b$

$$
Z=1+\frac{\mathrm{Pb}}{\mathrm{RT}}=1+\frac{\mathrm{RT}}{10 \mathrm{~b}} \cdot \frac{\mathrm{~b}}{\mathrm{RT}}=\frac{11}{10}=1.1
$$

9.(B) $\Delta \mathrm{H}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}=3 \times 75 \times(75-15)=3 \times 75 \times 60=13.5 \mathrm{~kJ}$
10.(D) Adding reactant will drive the reaction in forward direction in order to restore equilibrium. Therefore, addition of $\mathrm{CO}(\mathrm{g})$ will increase the equilibrium amount of CO_{2}.
11.(D) Absorbance, $A=\log \frac{I_{0}}{I}=\log \frac{100}{19.2}=0.717$

$$
\varepsilon=\frac{\mathrm{A}}{\mathrm{lc}}=\frac{0.717}{(1 \mathrm{~cm})\left(5 \times 10^{-4} \mathrm{~mol} / \mathrm{L}\right)}=1.43 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}
$$

12.(B) There are two tetrahedral in a cube so

$$
\begin{aligned}
& \Delta_{\text {cubic }}=2 \Delta_{\mathrm{t}} \Delta_{\mathrm{t}}=\frac{4}{9} \Delta_{0} \\
& \Delta_{\text {cubic }}=2 \times \frac{4}{9} \Delta_{0} \Delta_{\text {square planar }}=1.3 \Delta_{0} \\
& \Delta_{\text {cubic }}=\frac{8}{9} \Delta_{0}
\end{aligned}
$$

13.(D) For ${ }^{3} \mathrm{D}$ spin multiplicity is 3

$$
\begin{aligned}
&(2 S+1)=3 \quad L \Rightarrow \quad \begin{array}{l}
0
\end{array}=S \\
& 1=P \\
& 2=D \\
& 3=F
\end{aligned}
$$

then $2 S=4$

$$
S=2
$$

For D total angular momentum
quantum number $L=2$

$$
\begin{aligned}
& \mathrm{J}_{\text {possible }} \Rightarrow \quad(\mathrm{L}+\mathrm{S}) \quad-\cdots----\quad(\mathrm{L}-\mathrm{S}) \\
& (2+2) \quad(2-2) \\
& \begin{array}{lllll}
4 & 3 & 2 & 1
\end{array} \\
& J_{\text {valid }} \Rightarrow \quad(2 S+1) \Rightarrow 5 \text { All J are valid }
\end{aligned}
$$

$J_{\text {useful }}$ can be $4\left({ }^{3} \mathrm{D}_{4}\right)$ and $0\left({ }^{3} \mathrm{D}_{0}\right)$.
4 not present in option so Ans. is ${ }^{3} \mathrm{D}_{0}$.
14.(B) $\left[\mathrm{TeF}_{5}\right]^{-}=\mathrm{AB}_{4} \mathrm{LF}^{-}$

Steric No. $=\frac{6+5+1}{2}=6$
Geometry $=\mathrm{sp}^{3} \mathrm{~d}^{2}$
Shape = Square Pyramidal
15.(A) $P_{4} S_{3}=$

No. of P-S bonds $=6$
No. of P-P bonds $=3$.
16.(C) The following electronic configurations show orbital contribution to the magnetic moment in high spin octahedral complexes -

$$
\mathrm{d}^{1}, \mathrm{~d}^{2}, \mathrm{~d}^{6}, \mathrm{~d}^{7}
$$

$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow$ C.M.I. $\rightarrow \mathrm{d}^{9}$, H.S.
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow$ C.M.I. $\rightarrow \mathrm{d}^{8}$, H.S.
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+} \rightarrow\right.$ C.M.I. $\rightarrow \mathrm{d}^{7}$, H.S. \rightarrow show orbital contribution.
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+} \rightarrow\right.$ C.M.I. $\rightarrow \mathrm{d}^{4}$, H.S.
17.(A)

18.(A)

In this reaction, the reagent LiAlH_{4} attacks from axial side to give the major product in which in the OH group lies in axial side $\&$ is stabilized by H -Bonding.
19.(B)

20.(A)
(At lower
pH
$\xrightarrow[\text { at } \mathrm{pH}-10]{-3 \mathrm{H}^{+}}$

(At higher pH Monoanion)

At $\mathrm{pH}-10$ all H^{+}of tryptophan are lost and the monoanion exists.
21.(C)

$\xrightarrow{\text { (i) } \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{TsOH}}$

22.(A) In C = C - C = O system as solvent polarity increases, the resonating structure II is more favoured, so the $n-\pi^{*}$ transitions undergo hypsochromic shift, while the $\pi-\pi^{*}$ transitions undergo bathochromic shift.
$-\underset{\mid}{C-C-C}:(I) \leftrightarrow-\stackrel{\oplus}{C}-C=\underset{\mid}{C}-\stackrel{\ominus}{\mathrm{O}}:$
(II) more stable in polar solvent.
23.(D) $\mathrm{AgNO}_{3}+\mathrm{KCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{KNO}_{3}(\mathrm{aq})$ Initially there is aq. KCl solution now as solution of AgNO_{3} is added, $\mathrm{AgCl}(\mathrm{s})$ is formed. Hence conductivity of solution is almost compensated (or slightly increase) by the formation of KNO_{3}. After end point conductivity increases more rapidly because of the addition of excess AgNO_{3} solution.
24.(D) At initial stage

Clay	Silica	Water
$100-(45 \%+12 \%)$	45%	12%
$=43 \%$		

At final stage :
Let silica $=x \%$

$$
\begin{aligned}
& \text { water }=8 \% \text { (given) } \\
& \text { clay }=(92-x) \%
\end{aligned}
$$

Ratio of silica \& clay will remain same before \& after drying
25.(B)
$\Rightarrow \frac{45}{43}=\frac{x}{(92-x)} \Rightarrow x=47 \%$

$\varepsilon_{V}=\left(V+\frac{1}{2}\right) \omega_{e}-\left(V+\frac{1}{2}\right)^{2} \omega_{e} X e$
For $V=0$
$\varepsilon_{V=0}=\frac{1}{2} \omega_{e}-\frac{1}{4} \omega_{e} X e=\frac{1}{2} \times 2330 \mathrm{~cm}^{-1}-\frac{1}{4} \times 56 \mathrm{~cm}^{-1}=1165 \mathrm{~cm}^{-1}-14 \mathrm{~cm}^{-1}$
$\varepsilon_{\mathrm{V}=0}=1151 \mathrm{~cm}^{-1}$
For II $^{\text {nd }}$ level $\mathrm{V}=1$
$\varepsilon_{V=1}=\left(1+\frac{1}{2}\right) \omega_{e}-\left(1+\frac{1}{2}\right)^{2} \omega_{e} X e=\frac{3}{2} \omega_{e}-\frac{5}{4} \omega_{e} X e$

$$
=\frac{3}{2} \times 2330 \mathrm{~cm}^{-1}-\frac{5}{4} \times 56 \mathrm{~cm}^{-1}=3495 \mathrm{~cm}^{-1}-70 \mathrm{~cm}^{-1}
$$

$\varepsilon_{\mathrm{V}=1}=3425 \mathrm{~cm}^{-1}$
Spacing $=\varepsilon_{v=1}-\varepsilon_{v=0}=3425 \mathrm{~cm}^{-1}-1151 \mathrm{~cm}^{-1}=2274 \mathrm{~cm}^{-1}$.
26.(A) The rate of reaction is -
$\mathrm{R}=\frac{\mathrm{d}[\mathrm{HCl}]}{\mathrm{dt}}=\mathrm{K}_{2}[\mathrm{Cl} \cdot]\left[\mathrm{CH}_{4}\right]$
$\mathrm{Cl} \cdot$ is intermediate so on applying steady-state approximation -
$\frac{\mathrm{d}[\mathrm{Cl} \cdot}{\mathrm{dt}}=2 \mathrm{~K}_{1}\left[\mathrm{Cl}_{2}\right]-\mathrm{K}_{2}[\mathrm{Cl} \cdot]\left[\mathrm{CH}_{4}\right]+\mathrm{K}_{3}\left[\mathrm{CH}_{3} \cdot\right]\left[\mathrm{Cl}_{2}\right]-2 \mathrm{~K}_{4}\left[\mathrm{Cl}^{\circ}\right]^{2}=0$
$\frac{\mathrm{d}\left[\mathrm{CH}_{3}^{\cdot}\right]}{\mathrm{dt}}=\mathrm{K}_{2}[\mathrm{Cl} \cdot]\left[\mathrm{CH}_{4}\right]-\mathrm{K}_{3}\left[\mathrm{CH}_{3} \cdot\right]\left[\mathrm{Cl}_{2}\right]=0$
$\left[\mathrm{CH}_{3}{ }^{\bullet}\right]=\frac{\mathrm{K}_{2}\left[\mathrm{Cl}^{\bullet}\right]\left[\mathrm{CH}_{4}\right]}{\mathrm{K}_{3}\left[\mathrm{Cl}_{2}\right]}$
Substituting the value of eq.(iii) into eq.(ii) -
$0=2 \mathrm{~K}_{1}[\mathrm{Cl}]-\mathrm{K}_{2}[\mathrm{Cl} \cdot]\left[\mathrm{CH}_{4}\right]+\mathrm{K}_{3}\left(\frac{\mathrm{~K}_{2}\left[\mathrm{Cl}^{\bullet}\right]\left[\mathrm{CH}_{4}\right]}{\mathrm{K}_{3}\left[\mathrm{Cl}_{2}\right]}\right)\left[\mathrm{Cl}_{2}\right]-2 \mathrm{~K}_{4}\left[\mathrm{Cl}^{\bullet}\right]^{2}$
$0=2 \mathrm{~K}_{1}\left[\mathrm{Cl}_{2}\right]-2 \mathrm{~K}_{4}\left[\mathrm{Cl}^{\circ}\right]^{2}$
$[\mathrm{Cl} \cdot]=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}\left[\mathrm{Cl}_{2}\right]^{1 / 2}$
From eq. (iv) \& (i) -
$\mathrm{R}=\mathrm{K}_{2}\left(\frac{\mathrm{~K}_{1}}{\mathrm{~K}_{4}}\right)^{1 / 2}\left[\mathrm{CH}_{4}\right]\left[\mathrm{Cl}_{2}\right]^{1 / 2}$
27.(C) $\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}}$
$\mathrm{K}_{\mathrm{h}}^{\prime}=\frac{\mathrm{h}^{2}}{(1-\mathrm{h})^{2}}$
$\frac{\mathrm{h}}{1-\mathrm{h}}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}} \cdot \mathrm{K}_{\mathrm{b}}}}=\sqrt{\frac{1.008 \times 10^{-14}}{1.75 \times 10^{-5} \times 3.38 \times 10^{-10}}}=1.219$
$\mathrm{h}=0.5495$
\% hydrolysis = 54.95\%.
28.(A) Energy of Ground state $=\mathrm{E}_{0}=1$

Energy of first excited state $=E_{1}=1 \times 10^{-20} \mathrm{~J}$
Energy of second excited state $=E_{2}=3 \times 10^{-20} \mathrm{~J}$
T = 298 K
Population between two states -
$\frac{N_{j}}{N_{o}}=\exp \left(-\frac{\Delta E}{K_{B} T}\right)$
Population ratio between ground and ${ }^{\text {st }}$ excited state
$\frac{N_{1}}{N_{0}}=\exp \left(-\frac{1 \times 10^{-20}}{1.38 \times 10^{-23} \times 298}\right)=\exp (-2.4317)=0.0879$
$\mathrm{N}_{0}: \mathrm{N}_{1}=1: 0.0879$
Population ratio between $\mathrm{I}^{\text {st }}$ and $\mathrm{II}^{\text {nd }}$ excited states -

$$
\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}=\exp \left(-\frac{2 \times 10^{-20}}{1.38 \times 10^{-23} \times 298}\right)=\exp (-4.8633)=0.0077
$$

$N_{1}: N_{2}=1: 0.0077$
So, $N_{0}: N_{1}: N_{2}=1: 0.0879:(0.0077 \times 0.0879)$
$N_{0}: N_{1}: N_{2}=1: 0.0879: 0.000679$
On dividing by 1.088
$N_{0}: N_{1}: N_{2}=0.919: 0.081: 0.0006$
$\mathrm{N}_{0}: \mathrm{N}_{1}: \mathrm{N}_{2}=0.919: 0.081: 0.001$
29.(A)The pH point from where the ionisation of the acid starts is approximately equal to its pk_{a}, so in this case $\mathrm{pH}_{1}=\mathrm{pKa}$.
30.(C)The differential rate expansions of this reactions are

$$
\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=-\mathrm{K}_{\mathrm{A}}[\mathrm{~A}] ; \frac{\mathrm{d}[\mathrm{I}]}{\mathrm{dt}}=-\mathrm{K}_{\mathrm{A}}[\mathrm{~A}]-\mathrm{K}_{\mathrm{I}}[\mathrm{I}],
$$

$$
\frac{\mathrm{d}[\mathrm{p}]}{\mathrm{dt}}=\mathrm{K}_{\mathrm{I}}[\mathrm{I}]
$$

Applyine stead state approximation to differential rate expression for I .

$$
\begin{aligned}
& \quad \frac{d[I]}{d t}=-0 K_{A}[A]-K_{J}[I] \\
& =\frac{K_{A}}{K_{I}}=\frac{[\mathrm{I}]}{[\mathrm{A}]} \\
& =\frac{\mathrm{K}_{\mathrm{A}}}{\mathrm{~K}_{\mathrm{I}}}=[\mathrm{A}]=\frac{\mathrm{K}_{\mathrm{A}}}{\mathrm{~K}_{\mathrm{I}}}[\mathrm{~A}] \circ \mathrm{e}^{-\mathrm{KAt}}[\mathrm{I}] \\
& \text { Rate of reaction } \\
& \frac{\mathrm{d}[\mathrm{p}]}{\mathrm{dt}}=\mathrm{K}_{\mathrm{I}}[\mathrm{I}]=\frac{\mathrm{K}_{\mathrm{A}}}{\mathrm{~K}_{\mathrm{I}}}\left(\mathrm{~K}_{\mathrm{I}}[\mathrm{~A}] \circ \mathrm{e}^{-\mathrm{KAt}}\right) \\
& \int_{0}^{[p]} \mathrm{d}[\mathrm{p}]=\mathrm{K}_{\mathrm{A}}[\mathrm{~A}] \circ \int_{0}^{\mathrm{t}} \mathrm{e}^{-\mathrm{kAt}}
\end{aligned}
$$

$$
[p]=K_{A}[A] \circ\left[\frac{1}{K_{A}}\left(1-e^{-K A t}\right)\right]
$$

$$
[p]=[A] \circ\left(1-e^{-k A t}\right)
$$

31.(A.D) (X)

(Resonance Stabilized Anion)

(Antiaromatic Anion)
So (X) is a stronger bronsted acid $\left(\mathrm{H}^{+}\right.$donor) than (Y) and reacts faster than (Y) with a base.
32.(D)

In conformation (X), the methyl groups are anti so it is more stable conformation than (Y), where these two groups have gauche conformation.
33. (A,B,C,D)
(I) $1736>$ (II) 1718 (Keto-enol form)
(I) 1738 (H-b) < (II) 1760
(I) 1686 (Steric Crowding) < (II) 1693
(I) -I effect of F groups $>$ (II) +I effect of CH_{3} group.
34. $(A, B, D)(A) 1^{\text {st }}$ compound has zero dipole moment.
(B) EWG $(\mathrm{O}, \mathrm{Cl})$ are in the same direction.
(D) -COOH group with draws more -ve charge. So charge separation will increase.
35.(B,C,D) The structure of $\mathrm{H}_{3} \mathrm{PO}_{3}$ is as follows: There are only two -OH groups and hence dibasic. The oxidation number of P in this acid is +3 . Whereas P may have +5 oxidation state also. Therefore, $\mathrm{H}_{3} \mathrm{PO}_{3}$ can be oxidized which means $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a reducing agent.

36.(C,D) In Cis - $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$ and trans - $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$ place of symmetry is present so optically inactive.
In Cis-[Co(en) $\left.)_{2} \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ plane of symmetry and centre of symmetry are absent so they are optically active.
37.(A,B) Boron Nitride and Graphite have staked layer structures.
38. $(\mathbf{A}, \mathbf{B}, C) 75 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{HCl}=15 \mathrm{mmol} \mathrm{HCl}$
$25 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{NaOH}=5 \mathrm{~mm} \mathrm{NaOH}$
After neutralization, 10 mmol HCl will be remaining in 100 mL of solution.
\Rightarrow Molarity of HCl in the final solution $=\frac{10}{100}=0.10$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.10)=1$
39.(A,D) For the given cell, we have

Electrode
Right (1 M calomel)
Left (quinhydrone) $\quad \frac{1}{2} \mathrm{Q}+\mathrm{H}^{+}+\mathrm{e}^{-}=\frac{1}{2} \mathrm{QH}_{2}$

Potential

$\mathrm{E}_{\text {calomel }}=\mathrm{E}_{\text {calomel }}^{0}$

$$
\mathrm{E}_{\mathrm{Q}, \mathrm{QH}, \mathrm{H}^{+} \mid \mathrm{Pt}}=\mathrm{E}_{\mathrm{Q}, \mathrm{QH}}^{2}, \mathrm{H}^{+} \mid \mathrm{Pt}
$$

$$
-\frac{\mathrm{RT}}{\mathrm{~F}} \ln \frac{1}{\mathrm{a}_{\mathrm{H}^{+}}}
$$

The emf of the cell is

$$
\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {calomel }}^{\circ}-\mathrm{E}_{\mathrm{Q}, \mathrm{QH}}^{2}, \mathrm{H}+\mathrm{Pt},\left(\mathrm{E}_{\text {calomel }}^{\circ}-\mathrm{E}_{\mathrm{Q}, \mathrm{QH}, \mathrm{H}^{+} \mid \mathrm{Pt}}^{\circ}\right)+\frac{\mathrm{RT}}{\mathrm{~F}} \ln \frac{1}{\mathrm{a}_{\mathrm{H}^{+}}}
$$

At 298 K , we have
$\mathrm{E}_{\text {cell }}=\left(\mathrm{E}_{\text {calomel }}^{\circ}-\mathrm{E}_{\mathrm{Q}, \mathrm{OH}, \mathrm{H}^{+} \mathrm{Pt}}^{\circ}\right)+(0.05913 \mathrm{~V}) \mathrm{pH}$

$$
=(0.280 \mathrm{~V}-0.6996 \mathrm{~V})+(0.05913 \mathrm{~V}) \mathrm{pH}=-0.4196 \mathrm{~V}+(0.05913 \mathrm{~V}) \mathrm{pH}
$$

Thus, we have
$\mathrm{E}_{\text {cell }}=-0.4196 \mathrm{~V}+(0.05913 \mathrm{~V}) \times 5=-0.1239 \mathrm{~V}$
$\mathrm{pH}=\frac{1}{(0.05913 \mathrm{~V})}\left(\mathrm{E}_{\text {cell }}+0.4196 \mathrm{~V}\right)=\frac{0.4196 \mathrm{~V}}{0.05913 \mathrm{~V}}=7.1$
40. (A,C)

Calculating $\sin ^{2} \theta$, we have

Angle	$\sin \theta$	$\sin ^{2} \theta$
21.65°	0.3689	0.1361
25.21°	0.4258	0.1813
37.06°	0.6024	0.3629
44.96°	0.7065	0.4991
47.58°	0.7381	0.5448

Taking the ratios of $\sin ^{2} \theta$, we get
or $\quad 3 \times 0.045: 4 \times 0.045: 8 \times 0.045: 11 \times 0.045: 12 \times 0.045$
that is $\quad 3 \mathrm{~K}: 4 \mathrm{~K}: 8 \mathrm{~K}: 11 \mathrm{~K}: 12 \mathrm{~K}$, where $\mathrm{K}=0.045$
From these ratios, it is obvious that copper has face-centred cubic crystal.

Since

$$
K=\frac{\lambda^{2}}{4 a^{2}}
$$

therefore,
$\mathrm{a}=\left(\frac{\lambda^{2}}{4 \mathrm{~K}}\right)^{1 / 2}=\frac{\lambda}{2} \cdot \frac{1}{\sqrt{\mathrm{~K}}}=\frac{154.05 \mathrm{pm}}{2 \times \sqrt{0.045}}=\frac{154.05 \mathrm{pm}}{2 \times 0.2121}=363.2 \mathrm{pm}$
In a face-centred cubic lattice, atoms touch one another along face-diagonal.
Therefore, $4 \mathrm{r}=\sqrt{2} \mathrm{a} \quad$ or $\quad r=\frac{\sqrt{2} a}{4}$
substituting the values, we have
$r=\frac{(1.414)(363.2 \mathrm{pm})}{4}=128.3 \mathrm{pm}$
41. 53
$\ln \frac{K^{\prime}}{K}=\frac{\Delta H_{r}^{\circ}}{R}\left(\frac{1}{T}-\frac{1}{T^{\prime}}\right)$
$\Delta H_{r}^{\circ}=\frac{R \ln \left(\frac{K^{\prime}}{K}\right) K}{\left(\frac{1}{T}-\frac{1}{T^{\prime}}\right)}$
$\Delta \mathrm{H}_{\mathrm{r}}^{\circ}=\frac{8.314 \times \ln (2)}{\left(\frac{1}{298}-\frac{1}{308}\right)}=53 \mathrm{~kJ} \mathrm{~mol}^{-1}$
42. $-\mathbf{0 . 7 9}$

Concentration of zinc sulphate solution $=0.1 \mathrm{M} ;$ Percentage dissociation $=95$

$$
\therefore \quad\left[\mathrm{Zn}^{2+}\right]=0.1 \times \frac{95}{100}=0.095 \mathrm{M}
$$

The electrode reaction in this case is

$$
\left.\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(\mathrm{~s}) \quad \text { (i.e., } \mathrm{n}=2\right)
$$

According to the Nernst equation, the potential of the electrode is given by

$$
\mathrm{E}_{\mathrm{el}}=\mathrm{E}_{\mathrm{el}}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \frac{1}{\left[Z n^{2+}\right]}=\mathrm{E}_{\mathrm{el}}^{\circ}+\frac{\mathrm{RT}}{\mathrm{nF}} \ln \left[\mathrm{Zn}^{2+}\right]=\mathrm{E}_{\mathrm{el}}^{\circ}+\frac{0.0591}{n} \log \left[Z n^{2+}\right] \text { at } 25^{\circ} \mathrm{C}
$$

Substituting the various values in the above equation,

$$
\mathrm{E}_{\mathrm{el}}=-0.76+\frac{0.0591}{2} \log 0.095=-0.79 \text { volt. }
$$

43. 0.3333

$$
\text { Use }\left(\frac{\partial P}{\partial V_{m}}\right)=0 \quad \& \quad\left(\frac{\partial^{2} P}{\partial V_{m}^{2}}\right)=0 \text { to get }
$$

$P_{c}=\frac{B^{3}}{27 C^{2}} ; V_{c}=\frac{3 C}{B}$ and $T_{c}=\frac{B^{2}}{3 R C}$
Now, $\mathrm{P}_{\mathrm{c}} \mathrm{V}_{\mathrm{c}}=\mathrm{Z}_{\mathrm{c}} R \mathrm{~T}_{\mathrm{c}} \quad \mathrm{Z}_{\mathrm{c}}=\frac{\mathrm{P}_{\mathrm{c}} \mathrm{V}_{\mathrm{c}}}{\mathrm{RT}}=\frac{1}{3}$ or 0.3333
44. 2.4

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons 2 \mathrm{C}
$$

Initial mole
2
Mole at equilibrium (2-x)

$$
\begin{array}{ll}
\therefore & \mathrm{K}_{\mathrm{C}}=\frac{[C]^{2}}{[A][B]}=\frac{4 x^{2} \cdot v \cdot V}{V^{2}(2-x)(3-x)} \\
& 4=\frac{4 x^{2}}{(2-x)(3-x)} \\
\therefore & x^{2}=6-5 x+x^{2}
\end{array}
$$

$$
\therefore \quad \mathrm{x}=1 \cdot 2
$$

48. 6

Hints : A decapeptide will have (9) peptide linkage
Mass of hydrolyzed product is $(796+162) \mathrm{gm} / \mathrm{mole}$ ($9 \mathrm{H}_{2} \mathrm{O}$ Molecules used, so 18X 9= 162 added)

Number of glycine molecule $=\frac{0.47 \times 958}{75}=6$
49. 5

Hints :

3-bromo-3-cyclopentylhexane Alc. KOH

$+$

($E+Z$)
$+2+$

Total
$=5$
Dehydrobromination of alkyl bromides in the presence of alc. KOH follows E2 mechanism. Hence no rearrangement in alkyl chain is possible.
50. 21
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Br}$
Vibration modes $=3 \mathrm{~N}-6 \quad(\mathrm{~N}=9)$

$$
=27-6=21 \text { Ans. }
$$

51. 3

[cis-1,3-Dichlorocyclohexane(a,a)meso]

Total number of stereoisomers : cis-isomer (only 1 meso) trans-isomer $(\mathrm{d}+\boldsymbol{\ell}=2)$

$$
=1+2=3
$$

52. 3.495

Absorbance $A=\varepsilon C \boldsymbol{l}$

$$
\begin{aligned}
& A=\log \frac{I_{o}}{I_{t}}\left[\begin{array}{l}
I_{o}=\text { Intensity of initial light } \\
I_{t}=\text { Intensity of transmitted light }
\end{array}\right] \\
& A=\varepsilon C \boldsymbol{\ell}=\log \frac{I_{0}}{I_{t}}=\log \frac{1 \times 100}{I_{t} / I_{o} \times 100}=\log \frac{100}{\% T}=\log 100-\log \% T=2-\log \% T
\end{aligned}
$$

$1 \mathrm{~mm}=.1 \mathrm{~cm}$
$\varepsilon=\frac{2-\log 20}{.1 \mathrm{~cm} \times 2 \mathrm{~mol} \mathrm{It}^{-1}}=\frac{2-1.3010}{.2}=\frac{.699}{.2}=3.495$.

53. 0.10

Crotonic acid is formed as follows :

$$
\mathrm{HCl}+\mathrm{NaZ} \longrightarrow \mathrm{NaCl}+\mathrm{HZ} \text { (crotonic acid) }
$$

where Z stands for crotonate ion.
Crotonic acid is a weak organic acid and $\mathrm{HCl}, \mathrm{NaZ}$ and NaCl are strong electrolytes. Hence, using Kohlraush's law of independent migration of ions,

$$
\Lambda_{\mathrm{mHZZ}}^{\circ}=\Lambda_{\mathrm{mHCl}}^{\circ}+\Lambda_{\mathrm{mNaZ}}^{\circ}-\Lambda_{\text {mNaCl }}^{\circ}=(425+80-125) \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}=380 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2}
$$

mol^{-1}
Also, at the given concentration of crotonic acid,

$$
\begin{aligned}
& \Lambda_{\mathrm{m}}=\frac{\kappa}{\mathrm{c}}=\frac{3.8 \times 10^{-3} \mathrm{~S} \mathrm{~m}^{-1}}{0.001 \times 10^{3} \mathrm{~mol} \mathrm{~m}^{-3}}=38.0 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \\
& \alpha=\frac{\Lambda_{\mathrm{m}}}{\Lambda_{\mathrm{m}}^{\circ}}=\frac{38.0 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}}{380 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}}=\mathbf{0 . 1 0}
\end{aligned}
$$

54. 8000
$P_{1}=2 \mathrm{~atm}$
$\mathrm{~V}_{1}=1000 \mathrm{~mL}$
$\mathrm{~T}_{1}=-73^{\circ} \mathrm{C}=(-73+273) \mathrm{k}$
$=200 \mathrm{~K}$
$P_{2}=0.5 \mathrm{~atm}$
$\mathrm{V}_{1}=1000 \mathrm{~mL}$
$\mathrm{V}_{2}=$?
$=200 \mathrm{~K}$
$\mathrm{T}_{2}=123^{\circ} \mathrm{C}=(123+273)$

We known that $\quad \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
So $\frac{2 \times 1000}{200}=\frac{0.5 \times V_{2}}{400}$ or $V_{2} \times \frac{2 \times 1000 \times 400}{200 \times 0.5}=8000 \mathrm{~mL}$
55. 65.71

Total vapour-pressure of solution :
$P=P_{\varepsilon t}^{\circ} X_{\varepsilon t}+P_{m t}^{\circ} X_{m t}$
$P_{\epsilon t}^{\circ}=$ Vapour pressure of Ethanol $=44.5 \mathrm{~mm}$ of Hg
$\mathrm{P}_{\mathrm{mt}}^{\circ}=$ Vapour pressure of Methanol $=88.7 \mathrm{~mm}$ of Hg
$X_{\text {et }}=$ Mole fraction of ethanol
$\mathrm{X}_{\mathrm{mt}}=$ Mole fraction of methanol
$\Rightarrow \mathrm{n}_{\text {eth }}=\frac{60}{46} \quad$ (M.W. of ethanol $=46$)
$=1.30 \mathrm{~mol}$
$\mathrm{n}_{\text {meth }}=\frac{40}{32} \quad($ M.W. of methanol $=32)$

$$
=1.25 \mathrm{~mol}
$$

$\mathrm{x}_{\text {eth }}=\frac{1.30}{1.30+1.25}=0.50$
$X_{\text {meth }}=\frac{1.25}{1.25+1.30}=0.49$
$P=44.5 \times 0.50+88.7+0.49=65.71 \mathrm{~mm}$ of Hg
56. 2

The general expression for the half-life of a reaction of the type $A \rightarrow P$ is $t_{\frac{1}{2}}=\frac{2^{n-1}-1}{(n-1) k[A]_{0}^{n-1}}=f(n, k)[A]_{0}^{1-n}$
where $f(n, k) \frac{2^{n-1}-1}{(n-1) k}$.
Then $\log t_{\frac{1}{2}}=\log f+(1-n) \log p_{0}\left[p_{0} \times[A]_{0}\right]$
Hence, $\log \left(\frac{t_{\frac{1}{2}}\left(p_{0,1}\right)}{t_{\frac{1}{2}}^{2}\left(p_{0,2}\right)}\right)=(1-n) \log \left(\frac{p_{0,1}}{p_{0,2}}\right)=(n-1) \log \left(\frac{p_{0,2}}{p_{0,1}}\right)$ or

$$
(n-1)=\frac{\log \left(\frac{410}{880}\right)}{\log \left(\frac{169}{363}\right)}=0.999=1
$$

Therefore, $\mathrm{n}=2$.
57. 8

$$
\begin{aligned}
\mathrm{J}_{\max }= & \left(\frac{\mathrm{kT}}{2 \mathrm{hcB}}\right)^{1 / 2}-\frac{1}{2}=\left[\frac{\left(1.38 \times 10^{-23} \mathrm{JK}^{-1}\right)(300 \mathrm{~K})}{2\left(6.626 \times 10^{-34} \mathrm{Js}\right)\left(3 \times 10^{10} \mathrm{cms}^{-1}\right)\left(1.566 \mathrm{~cm}^{-1}\right)}\right]^{1 / 2}-\frac{1}{2} \\
& =7.56=8
\end{aligned}
$$

58. 13

$$
\begin{aligned}
& \delta=\frac{v_{\text {sample }}-v_{\text {reference }}}{\text { operating frequency }} \times 10^{6} \mathrm{ppm}=\frac{\Delta \nu \times 10^{6}}{\text { operating frequency }} \mathrm{ppm} \\
& =\frac{-1200 \times 10^{6}}{400 \times 10^{6}} \mathrm{ppm}=-3 \\
& \tau+\delta=10 \\
& \tau=10-\delta=10-(-3)=13
\end{aligned}
$$

59. 5.2
$\mathrm{pl}=\frac{\mathrm{pka}+\mathrm{pka}^{\prime}}{2}$
pka $=5.7$
pka' $=14-\mathrm{pkb}=14-9.3=4.7$
$\mathrm{pH}=\frac{5.7+4.7}{2}=\frac{10.4}{2}=5.2$
60. 1
$A=\log \frac{I_{0}}{I_{t}}=\varepsilon \ell C$
$\log \frac{I_{0}}{I_{0} / 10}=\varepsilon \ell C \quad I_{t}=\frac{I_{0}}{10}$
$\log 10=\varepsilon \times 20 \mathrm{~cm} \times .05 \mathrm{~mol}$ liter
$\varepsilon=\frac{\log 10}{20 \mathrm{~cm} \times .05 \mathrm{M}}=\frac{1}{20 \mathrm{~cm} \times .05 \mathrm{M}}=1=1$ mole liter cm^{-1}
