CHEMISTRY SOLVED SAMPLE PAPER

* DETAILED SOLUTIONS
TIFR - CHEMISTRY
MOCK TEST PAPER

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Some Useful Data

Avogadro number $=6.02 \times 10^{23} \mathrm{~mol}^{-1} \quad \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
$R T / F=0.0257 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$
Faraday $=96500$ C/eq. wt.
$\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$
Boltzmann constant $\mathrm{k}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
Mass of an electron $=9.109 \times 10^{-31} \mathrm{~kg}$
Standard reduction potential of $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \leftrightarrow \mathrm{Cu}:+0.34 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$
Standard reduction potential of $\mathrm{Ag}^{+}+\mathrm{e}^{-} \leftrightarrow \mathrm{Ag}:+0.80 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$
K_{b} for $\mathrm{NH}_{3}=1.8 \times 10^{-5}$
$S=k \ln W$

1. The molar absorptivity at $\lambda_{\text {max }}$ is minimum for
(A) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(B) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(C) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(D) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
2. Which of the following has maximum lattice energy?
(A) $\mathrm{Li}_{2} \mathrm{O}$
(B) $\mathrm{Na}_{2} \mathrm{O}$
(C) MgO
(D) BaO
3.

 $\xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{Br}_{2} / \mathrm{NaOH}}[\mathrm{X}], \quad[\mathrm{X}]$ will be
(A)

(B)

(C)

C)

(D)

4. The pK_{1} and pK_{2} values for alanine are 2.34 and 9.60 respectively. What is its isoelectric point?
(A) 5.97
(B) 2.34
(C) 9.60
(D) 7.26
5. Which one among the dienes \mathbf{A} to \mathbf{D} will undergo $[3,3]$-sigmatropic shift upon heating
A.

B.

C.

D.

(A) A
(B)
(C) C
(D) D
6. A substance undergoes first order decomposition involving two parallel first order reactions as -

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

The mol percent of B in the products is
(A) $23 \cdot 17$
(B) 76.83
(C) $30 \cdot 16$
(D) $69 \cdot 84$
7. Half life of the reaction is independent of initial concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$. Volume of O_{2} gas after 20 minutes is 5 L at 1 atm and $27^{\circ} \mathrm{C}$ and after completion of the reaction 50 L . The rate constant is: -
(A) $\frac{1}{20} \log 10 \mathrm{~min}^{-1}$
(B) $\frac{2.303}{20} \log 10 \mathrm{~min}^{-1}$
(C) $\frac{2.303}{20} \log \frac{50}{45} \mathrm{~min}^{-1}$
(D) $\frac{2.303}{20} \log \frac{45}{50} \mathrm{~min}^{-1}$
8. Chromium metal can be electrolytically plated out from an acidic solution containing CrO_{3}. Assuming that all of the CrO_{3} is in a soluble form, how many coulombs are required to cause 3.68 g of Cr to be deposited on the cathodic electrode?
(A) 20,500 coul
(B) 41,000 coul
(C) 10,250 coul
(D) $61,500 \mathrm{coul}$
9. The proton NMR spectrum of a compound with molecular formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ was obtained. Under low resolution three signals with relative intensities of $1: 2: 3$ were recorded. Under high resolution, the high field signal split into three lines of relative intensities $1: 2: 1$, medium field signal into four lines of intensities in the ratio of 1 : $3: 3: 1$. What is the structural formula?
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(B) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
(C) $\mathrm{CH}_{3} \mathrm{CHO}$
(D) Both A \& B
10. The following molecule has a

(A) Centre of symmetry
(B) Plane of symmetry
(C) Axis of symmetry
(D) None of the above
11. The correct order of increasing $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in the following aqueous solutions is:
(A) $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}<0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}<0.01 \mathrm{M} \mathrm{NaCl}<0.01 \mathrm{M} \mathrm{NaNO}_{2}$
(B) $0.01 \mathrm{M} \mathrm{NaCl}<0.01 \mathrm{M} \mathrm{NaNO}_{2}<0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}<0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(C) $0.01 \mathrm{M} \mathrm{NaNO}_{2}<0.01 \mathrm{M} \mathrm{NaCl}<0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}<0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(D) $0.01 \mathrm{M} \mathrm{H}_{2} \leq 0.01 \mathrm{M} \mathrm{NaNO}_{2}<0.01 \mathrm{M} \mathrm{NaCl}<0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
12. Which statement/relationship is correct?
(A) Upon hydrolysis salt of a strong base and weak acid gives a solution with $\mathrm{pH}<7$
(B) $\mathrm{pH}=-\log \frac{1}{\left[\mathrm{H}^{+}\right]}$
(C) Only at $25^{\circ} \mathrm{C}$ the pH of water is 7
(D) The value of pK_{w} at $25^{\circ} \mathrm{C}$ is 7
13. If the ionic strength of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}=1$ unit, then the molatity of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$ solution will be.
(A) 1 unit
(B) $1 / 2$ unit
(C) $1 / 3$ unit
(D) $1 / 4$ unit
14. Electrolysis of a solution of HSO_{4}^{-}ions produces $\mathrm{S}_{2} \mathrm{O}_{8}^{--}$. Assuming 75% current efficiency, what current should be employed to achieve a production rate of 1 mole of $\mathrm{S}_{2} \mathrm{O}_{8}^{--}$per hour
$(A)+71.5 \mathrm{amp}$
(B) 35.7 amp
(C) 142.96 amp
(D) $285 \cdot 93 \mathrm{amp}$
15. $2 \mathrm{e}^{-}$, standard oxidation potential $=-1.09$ volt. For $\mathrm{Fe} \longrightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$,
standard oxidation potential $=+0.44$ volt. Which of the following reactions is non spontaneous -
(A) $\mathrm{Br}_{2}+2 \mathrm{l}^{-} \longrightarrow 2 \mathrm{Br}^{-}+\mathrm{I}_{2}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(B) $\mathrm{Fe}+\mathrm{Br}_{2} \longrightarrow \mathrm{Fe}^{2+}+2 \mathrm{Br}^{-}$
(C) $\mathrm{Fe}+\mathrm{I}_{2} \longrightarrow \mathrm{Fe}^{2+}+2 \mathrm{I}^{-}$
(D) $\mathrm{I}_{2}+2 \mathrm{Br}^{-} \longrightarrow 2 \mathrm{I}^{-}+\mathrm{Br}_{2}$
16. Consider the following statements about intermolecular /intramolecular hydrogen bonds
(1) Both types of H -bonds are temperature-dependent
(2) Intramolecular H-bond disappears on increasing the concentration
(3) Intermolecular H-bond disappears on decreasing the concentration
(4) The boiling points of compounds having intramolecular H -bond are lower than that of those compounds which have intermolecular H -bond

Which of the statements given above are correct?
(A) 1, 2 and 4
(B) 3 and 4
(C) 1, 3 and 4
(D) 1 and 2
17. 100 mL of tap water containing $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ was titrated with $\mathrm{N} / 50 \mathrm{HCl}$ with methyl orange as indicator, If 30 mL of HCl were required, calculate the temporary hardness as parts of CaCO_{3} per 10^{6} parts of water.
(A) 150 ppm
(B) 300 ppm
(C) 450 ppm
(D) 600 ppm

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
18. Which of the following reactions takes place at elevated temperature $\left(500-550^{\circ} \mathrm{C}\right)$ and high pressure in the presence of a catalyst?
(A) Hydrogen reacts with oxygen to form water
(B) Hydrogen reacts with Nitrogen to form Ammonia
(C) Saturation of ethylene to ethane by hydrogen
(D) None of these
19. The product formed, when $\mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4}$ is heated is
(A) $\mathrm{Mg}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PO}_{4}$
(B) MgO
(C) PbO
(D) $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
20. The solubility of hydroxides, fluorides or oxalates of the metals of Group II A
(A) Increase down the group
(B) Decreases down the group
(C) Varies randomly
(D) Is constant
21. Gradual addition of potassium iodide solution to $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$ solution initially produces a dark brown precipitate which dissolves in excess of KI to give a clear yellow solution. Identify the yellow precipitate.
(A) I_{2}
(B) KI_{3}
(C) $\mathrm{Bi}(\mathrm{OH})_{2}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(D) $\mathrm{Bi}(\mathrm{OH})\left(\mathrm{NO}_{3}\right)_{2}$
22. An unknown inorganic compound (X) loses its water of crystallization on heating and its aqueous solution gives the following reactions:
(a) It gives a white turbidity with dilute HCl solution
(b) It decolorizes a solution of iodine in potassium iodide
(c) It gives a white precipitate with silver nitrate solution which turns black on standing. Identify the compound (X)
(A) $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
(D) None of these
23. In photography, sodium thiosulphate is used for
(A) Softening very dark images
(B) Making the latent image visible
(C) Intensifying faint images
(D) Dissolving residual silyer bromide
24. The correct order of equivalent conductance at infinite dilution of $\mathrm{LiCl}, \mathrm{NaCl}$ and KCl is
(A) $\mathrm{LiCl}>\mathrm{NaCl}>\mathrm{KCl}$
(B) $\mathrm{KCl}>\mathrm{NaCl}>\mathrm{LiCl}$
(C) $\mathrm{NaCl}>\mathrm{KCl}>\mathrm{LiCl}$
(D) $\mathrm{LiCl}>\mathrm{KCl}>\mathrm{NaCl}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
25. Identify the least stable ion amongst the following
(A) Li^{+}
(B) Be^{-}
(C) B^{-}
(D) C^{-}
26. According to band theory of bonding, conduction occurs in very good conductors because
(A) Valence band is full
(B) Valence band and conduction band overlap
(C) Band gap is appreciable
(D) Band gap is small
27. Which of the following, when doped into a crystal of ultra purified Germanium, will convert it into a p-type semiconductor?
(A) C
(B) As
(C) In
(D) Na
28. In the mass spectrum of ethyl benzene some of the prominent peaks appear at m/e $=106,91$ and 65 . Which of the species given below is not responsible for these peaks?
(A) Ethyl benzene
(B) Ethene
(C) Tropylium ion $\left(\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right)$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(D) $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{+}$
29. How many signals in NMR spectra will be obtained from the following compounds respectively?

1.

2.

3.

(A) 2, 1, 3, 2
(B) $1,4,3,2$
(C) 2, 3, 1, 2
(D) $1,1,2,1$
30. If the enthalpy of a reversible reaction is $8.314 \mathrm{~kJ} \mathrm{~mol}^{-1}$ over the temperature range $400 \cdot 500 \mathrm{~K}$, the value of $\ln \mathrm{K}_{500} / \mathrm{K}_{400}$ for the reaction is -
(A) 1.0
(B) $2 \cdot 0$
(C) 2.5
(D) $0 \cdot 5$
31. The hydrogen ion concentration of a slightly acidic water solution can be represented by:-
(A) $14-\mathrm{pOH}$
(B) $\mathrm{Kw} / \mathrm{pOH}$
(C) $10^{-\mathrm{pOH}}$
(D) $10^{-(14-\mathrm{pOH})}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
32. If v is the volume of a gas adsorbed on the surface of a solid, the plot of p / v versus p where p is the gas pressure in the langmuir adsorption isotherm, gives a straight line with slope equal to
(A) $\frac{p}{v}$
(B) K
(C) $\frac{1}{\mathrm{~K} v_{\text {mono }}}$
(D) $\frac{1}{v_{\text {mono }}}$
33. The equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ 国䖵 $2 \mathrm{HI}(\mathrm{g})$ is 32 at a given temperature. The equilibrium concentrations of I_{2} and HI are $0.5 \times$ 10^{-3} and $8 \times 10^{-3} \mathrm{M}$ respectively. The equilibrium concentration of H_{2} is -
(A) $1 \times 10^{-3} \mathrm{M}$
(B) $0.5 \times 10^{-3} \mathrm{M}$
(C) $2 \times 10^{-3} \mathrm{M}$
(D) $4 \times 10^{-3} \mathrm{M}$
34. Which of the statement regarding following structures is true ?

I

II

III
(A) I and II are epimers
(B) I and III are epimers
(C) Both are true
(D) All the three are epimers
35. Among the given compounds, the one which is least basic is
(A)

(B)

(C)

(D)

36.

The compound (A) is :
(A) Piperidine
(B) Pyrrole
(C) 3-methyl pyridine
(D) None of these
37.

$\xrightarrow{\text { (i) } \mathrm{Mg} / \text { Ether }}$ product
The final product of the reaction is
(A)

(B)

(C)

(D)

38. Acetic acid show two signals a and b at $\delta=8.0 \mathrm{ppm}$ and 3.8 ppm , respectively in a 50 MHz NMR spectrometer. Calculate the separation in frequency between the two signals on a 300 MHz spectrometer.
(A) $\Delta v_{\mathrm{a}}=2400 \mathrm{~Hz}$
(B) $\Delta v_{\mathrm{b}}=1140 \mathrm{~Hz}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(C) A \& B both
(D) $\Delta v_{\mathrm{a}}=2400 \mathrm{MHz} \& \Delta v_{\mathrm{b}}=1140 \mathrm{MHz}$
39. The order of the frequency of the carbonyl absorption in the aldehydes given below is:
(I)

(II)

(III)

(A) I $>$ III $>$ II
(B) II $>$ III $>$ I
(C) III $>$ II $>$ I
(D) I $>$ II $>$ III
40. Thermal reaction of allyl phenyl ether generates a mixture of ortho- and para-allyl phenols. The para-allyl phenol is formed via
(A) a $[3,5]$-sigmatropic shift
(B) First ortho-allyl phenol is formed, which then undergoes a [3, 3]-sigmatropic shift
(C) Two consecutive [3, 3]-sigmatropic shifts
(D) Dissociation to generate allyl cation, which then adds at para-position

ANSWER KEY

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Answer	A	C	C	A	B	B	C	B	A	B	C	C	C	A	D	C	B	B	D	A
Question	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$
Answer	B	B	D	B	B	B	C	B	A	D	D	D	D	C	C	A	D	C	D	B

HINTS AND SOLUTION

1.(A) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}=\mathrm{Mn}^{+2}=3 \mathrm{~d}^{5}$

In $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complex all transitions are not only laporte forbidden but also spin forbidden. Absorptions associated with doubly forbidden transitions are extremely weak with extinction coefficients several times smaller than those for singly forbidden transitions. So the molar absorptivity at $\lambda_{\text {max }}$ is minimum for $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]^{2+}\right.$.
2.(C) $\mathrm{MgO}, \mathrm{Mg}^{2+}$ ion is smallest in size and double the charge in comparison to Li^{+}and Na^{+}ions.
3.(C)

 of configuration

4. (A) $\mathrm{pl}=\frac{\mathrm{pK}_{1}+\mathrm{pK}_{2}}{2}=\frac{2.34+9.60}{2}=\frac{11.94}{2}=5.97$
5.(B) The thermal rearrangement of 1 , 5 -dienes by $[3,3]$ sigmatropy is called cope rearrangement.

(D)
[3,3]
Cope rearrangement

\rightarrow
6.(B) $\frac{\mathrm{k}_{1} \times 100}{\mathrm{k}_{1}+\mathrm{k}_{2}}=\frac{1.26 \times 10^{-4} \times 100}{1.25 \times 10^{-4}+3.80 \times 10^{-5}}=76.83$
7.(C) t_{1} is independent of initial concentration a, for first order reaction.
$x \propto V_{t}(=5 L$ at $t=20$ minutes $)$
a $\alpha V_{f}(=50 L$ at completion $)$
$k=\frac{2.303}{t} \log \frac{a}{a-x}=\frac{2.303}{20} \log \frac{50}{45}$
8.(B) $\mathrm{CrO}_{3}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Coulombs $=(3.68 \mathrm{~g} \mathrm{Cr}) \times\left(\frac{1 \mathrm{~mol} \mathrm{Cr}}{52.0 \mathrm{~g} \mathrm{Cr}}\right)\left(\frac{6 \mathrm{~F}}{1 \mathrm{~mol} \mathrm{Cr}}\right) \times\left(\frac{96,500 \mathrm{C}}{\mathrm{TF}}\right)=41,000$ coulombs
9.(A) Structural formula $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
relative intensities 3 : 2 : 1

Triplet quartet Singlet

ratio ratio
1:2:1 1:3:3:1
10.(B)

The cyclohexane ring has one plane of symmetry across 1,4 positions, cutting all 4 substituents in to half. The similar groups in cis orientation at 1,3 positions also show plane of symmetry.
11.(C) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is strong acid having $\mathrm{pH}<7 \cdot \mathrm{NaNO}_{2}$ on hydrolysis gives alkaline solution of $\mathrm{pH}>7 . \mathrm{NaCl}$ is neutral and $\mathrm{H}_{2} \mathrm{~S}$ is weak acid.
12.(C) Hydrolysis of a salt of strong base and weak acid gives $\mathrm{pH}>7$.

Also, $\mathrm{pH}=\log \frac{1}{\left[\mathrm{H}^{+}\right]}$and K_{w} for $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}=10^{-14}$. The pH of pure water is 7 at $25^{\circ} \mathrm{C}$ and decreases with increases in temperature.
13.(C) $I=\frac{1}{2}\left(2^{2} b+1^{2} .2 b\right)=3 b=1 \Rightarrow b=1 / 3 \Rightarrow C$
14.(A) $2 \mathrm{HSO}_{4}^{-} \longrightarrow \mathrm{S}_{2} \mathrm{O}_{8}^{2-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
$\frac{2 \mathrm{~F}}{0.75} \longrightarrow 1$ mole $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$
$\therefore \quad \mathrm{I}=\frac{\frac{2}{0.75} \times 96500}{3600}=71.5 \mathrm{amp}$
15.(D) E° for reaction in $(\mathrm{d})=\mathrm{E}_{\mathrm{OP}_{\mathrm{Br}}}^{\circ}+\mathrm{E}_{\mathrm{RP}_{1}}^{\circ}=-1.09+(-0.54)=-1.63 \mathrm{~V}$

Since, E° is negative and thus, reaction is non-spontaneous.
16.(C) (1) Both type of H -bonds breaks on heating so there is temperature dependent.
(2) Intramolecular H -bond is independent of concentration.
(3) Intermolecular H-bonds increase on increasing concentration and decrease on decreasing concentration.
(4) (a) Boiling point $(B P) \propto \frac{1}{\text { Intramolecular }}$

H-bond
(b) B.P. \propto Intermolecular H-bond.
17.(B) $30 \mathrm{mLN} / 50 \mathrm{HCl} \equiv 30 \mathrm{~mL} / \mathrm{N} / 50 \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \equiv 30 \mathrm{~mL} \mathrm{~N} / 50 \mathrm{CaCO}_{3} \equiv 100 \mathrm{~mL}$ tap water

Mass of CaCO_{3} in 100 mL tap water $=\frac{\mathrm{E} \times \mathrm{N} \times \mathrm{V}}{1000}=\frac{50 \times 30}{50 \times 1000}=0.03 \mathrm{~g}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
\Rightarrow hardness $=300 \mathrm{ppm}$
18.(B) The first reaction (a) occur on electrical sparking. The reaction in (c) occurs at elevated temperatures in the presence of a catalyst but not at $500-550^{\circ} \mathrm{C}$. The correct option is (b) which occurs at the above conditions.
19.(D) $2 \mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4} \xrightarrow{\mathrm{O}} \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{3}$
20.(A) Both lattice energy and hydrolysis energy decreases moving down the group due to gradual increase in size of M^{++}ion. So formed tends to increase the solubility while latter tends to decrease it. But lattice energy has dominating role here. And therefore, solubility increases down the group.
21.(B) At first, $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$ undergoes hydrolysis. Nitric acid is formed. Which oxidises KI to iodine. The liberated iodine dissolves in KI to form yellow solution of KI_{3}.

$$
\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{Bi}(\mathrm{OH})\left(\mathrm{NO}_{3}\right)_{2}\right]+\mathrm{HNO}_{3} ; \mathrm{HNNO}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+\mathrm{O}
$$

Kl_{3}
Yellow solution
22.(B) $\mathrm{X}=\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{KI}_{3}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{KI}+2 \mathrm{Nal}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
$2 \mathrm{AgNO}_{3}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \Longrightarrow \mathrm{Ag}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+2 \mathrm{NaNO}_{3}$
$\longrightarrow \mathrm{Ag}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ag}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{SO}_{4}$
23.(D) $\left.2 \mathrm{AgBr}+4 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Na}_{3}\left[\mathrm{Agg}_{2} \mathrm{O}_{3}\right)_{2}\right]+2 \mathrm{NaBr}$
24.(B) The ease of ionization of the given compounds will be in the order $\mathrm{LiCl}<\mathrm{NaCl}<$ KCI , hence equivalent conductance at infinite dilution in the same order.
25.(B) Be^{-}is attaining $2 \mathrm{~s}^{2} 2 \mathrm{sp}^{1}$ configuration by losing its fulfilled stability of $2 \mathrm{~s}^{2}$ configuration.
26.(B) A / C to band theory in electrical conductors either the valence band is only partially full or valence and conduction bands overlap.

27.(C) Purified Silicon (or germanium) crystals can be converted to p-type or n-type semiconductor by high temperature diffusion of the appropriate dopant element upto a concentration of 1 part in 10^{8} Group III elements boron,

Aluminium gallium or indium can be used to make p-type semiconductors. Though indium is the most used because of its low melting point.
28.(B) The peak at $\mathrm{m} / \mathrm{e}=106$ is the molecular ion peak. because molecular mass of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{H}_{5}$ (ethyl benzene) is 106 . The peak at $\mathrm{m} / \mathrm{e}=91$ is due to stable benzyl ion (or more likely due to tropylium ion $\left(\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right)$. It is the base peak. The peak at m/e $=65$ may be due to removal of acetylene molecule ($\mathrm{C}_{2} \mathrm{H}_{2}=26$ mass units) from trophylium ion.
29.(A) (1)

H_{3} (b)
b)
-2 signal
(2)

(3)
(b) (b)
-3 signal
(a) (a)
(4)

(a) (a)

- 2 signal
30.(D) $\ell_{n} \frac{\mathrm{~K}_{2}}{\mathrm{~K}_{1}}=\frac{\Delta \mathrm{H}}{\mathrm{R}} \frac{\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)}{\mathrm{T}_{12}}=\frac{8.314 \times 10^{3} \times(500-400)}{8.314 \times 400 \times 500}=0.5$
31.(D) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pH}=14-\mathrm{pOH}$
$\left[\mathrm{H}^{+}\right]=10^{-(14-\mathrm{pOH})}$
32.(D) According to Langmuir isotherm

$$
Q=\frac{K_{p}}{\left(1+K_{p}\right)}
$$

$\frac{v}{v_{\text {mono }}}=1+\frac{1}{\mathrm{~K}_{\mathrm{p}}}$

Multiplying through out by $\frac{\mathrm{P}}{v_{\text {mono }}}$

$$
\frac{p}{v}=\frac{\mathrm{p}}{v_{\text {mono }}}+\frac{1}{\mathrm{~K} v_{\text {mono }}}
$$

$y=m x+C$
Slope $=\frac{1}{v_{\text {mono }}}$
33.(D) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$

$$
\begin{aligned}
& \mathrm{K}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} \\
& {\left[\mathrm{H}_{2}\right]=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{I}_{2}\right] \times \mathrm{K}}=\frac{\left(8 \times 10^{-3}\right)^{-2}}{\left(0.5 \times 10^{-3}\right)(32)}=4 \times 10^{-3} \mathrm{M}}
\end{aligned}
$$

34.(C) Epimers are a pair of diastereomers which differ only in the configuration around a single carbon atom

I (glucose)

III (Mannose)

Note that (i) Structures I and II differ only at C_{4};
(ii) Structures II and III differ at C_{2} and C_{4};
(iii) Structures I and III differ only at C_{2}

Thus structures I and II and I and III are epimers.

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
35.(C)
 is least basic due to less availability of lone pair.
36.(A)

(piperidine)

37.(D)

38.(C) $\Delta v_{a}=\delta_{A} \times v_{0}=8 \times 10^{-6} \times 300 \times 10^{6}=2400 \mathrm{~Hz}$

$$
\Delta v_{\mathrm{b}}=\delta_{\mathrm{b}} \times v_{0}=3.8 \times 10^{-6} \times 300 \times 10^{6}=1140 \mathrm{~Hz}
$$

39.(D) (i)Cyclohexane carbonaldehyde being saturated will absorb around $1730 \mathrm{~cm}^{-1}$.
(ii) In benzaldehyde the absorption will be shifted to lower frequency ($1700 \mathrm{~cm}^{-1}$) due to conjugation
(iii) In salicylaldehyde the internal (chelate) hydrogen bonding causes a further large frequency shift to around $1666 \mathrm{~cm}^{-1}$.

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
40.(B)

\square

