

BHU CHEMISTRY SOLVED SAMPLE PAPER

*** DETAILED SOLUTIONS**

Enter the world of higher Education... IIT-JAM/JNU/NET/GATE/NIMCET

BHU CY

CHEMISTRY

FMTP

Note : Attempt all 120 questions. Each question carries 3 marks. 1 negative mark for each wrong answer.

Duration : 120 Minutes MAX. MARKS : 360 MARKS SCORED :

1. The configurations (R, S-notation) at C_1 and C_6 of the compound given below are

The Mechanism of the given reaction is possibly

(A) SN^2 (B) $ArSN^2$

(C) E₂

(D) SN¹

13. Select the formula representing the major product(s) of the following reaction

- (D) Both (A) and (B) are formed in approximately equal amounts.
- 14. Alkene that will give the product (X) on oxymercuration reduction reaction

the major product [X] is

16. The major products A and B in the following reaction sequence are

17. Match list - I (Name of Reaction) with List - II (Intermediate Species in Reaction) and select the correct answer using the codes given below the lists :

				List			List II					
			(Nan	ne of R	eaction)	(ntern	nediate	Speci	es in Reaction)		
	a. F	Reim	er - Tie	mann re	eaction	1. I	socya	nate				
	b. F	Pinac	ol - Pin	acolone	e rearrangement	t 2.[Dichlo	rocarbe	ne			
1	b. Pinacol - Pinacolone rearrangeme c. Hofmann - bromamide reaction		de reaction	3. (3. Carbanion							
		1	- 7			4. (Carbo	cation				
Code	s :	а	b	С			а	b	С			
	(A)	2	4	1		(B)	3	2	1			
	(C)	2	1	4		(D)	3	1	2			

18. Thermal reaction of allyl phenyl ether generates a mixture of ortho- and paraallyl phenols. The para-allyl phenol is formed via

(A) a[3, 5]-sigmatropic shift

(B) first ortho-allyl phenol is formed, which then undergoes a [3, 3]-sigmatropic shift

- (C) two consecutive [3, 3]-sigmatropic shifts
- (D) dissociation to generate allyl cation, which then adds at para-position
- **19.** Which one among the dienes **A-D** will undergo [3,3]-sigmatropic shift upon heating

20. Compound 'X' (C_5H_{10}) on ozonolysis gives two compounds D and E. Both D, E give positive lodoform test. E responds to Tollen's test but D does not identify X.

The final product of the reaction is

- 24. An IR spectrum of a hydrocarbon containing 10 per cent hydrogen gave two bands (i) 3295 cm⁻¹ and (ii) 625 cm⁻¹ along with a weak absorption band near 2130 cm⁻¹. What is the probable structure of the compound?
 - (A) $CH_3 CH = CH_2$ (B) $CH_3 - C \equiv CH$ (C) $C_6H_5CH_2OH$ (D) $CH_3 - CH_2 - CHO$

In IR spectra, Toluene shows bands at 3030 cm⁻¹, 2850-2960 cm⁻¹, 1600, 1580, 25. 1460 cm⁻¹, 730 cm⁻¹. The band at 3030 cm⁻¹ stands for (A) Ar – H str (B) C – H str in CH_3 (C) C = C str(D) C - H bending

¹H-NMR spectrum of compound with molecular formula $C_4H_9NO_2$ shows δ 5.30 26. (broad, 1H), 4.10 (q, 2H), 2.80 (d, 3H), 1.20 (t, 3H) ppm. The structure of the compound that is consistent with the above data is

- (A) CH₂NHCOOCH₂CH₂ (B) CH₃CH₂NHCOOCH (C) CH₃OCH₂CONHCH₃
 - (D) CH₃CH₂OCH₂CONH₂

An organic compound having molecular formula C₆H₁₁BrO₂ exhibits the following 27. peaks in 1H NMR spectrum.

δ 4.1 (2H, q, J = 7.5 Hz), 4.0 (2H, t, J = 7.5 Hz), 1.5-2.2 (2H, m),

1.25 (3H, t, J = 7.5 Hz).

The structure of the compound is

A compound of molecular formula C_8H_7 CIO shows a promient band in its IR 28. spectrum at 1690 cm⁻¹. ¹H NMR spectrum revealed only two major types of protons in the ratio of 5:2. Which one of the following structures best fits the above data ?

29. Which of the following has the highest value of carbon streching frequency in IR region?

(D) 1s² 2s² 2p⁶ 3s² 3p²

34. XeF₂ on hydrolysis yields

(A) NF_3 (B) CIF_3 (C) BF_3 (D) AIF_3

- **43.** The molecular shapes of SF_4 , CF_4 and XeF_4 are
 - (A) different with 1,0 and 2 lone pairs on central atom.
 - (B) different with 0,1,2 lone pairs on central atom.
 - (C) same with 1,1,1 lone pairs on central atom.
 - (D) same with 2,0,1 lone pairs on central atom.
- **44.** Which of the following contains maximum number of lone pairs on the central atom

54.	Which of the foll	owing has three i	onisable chlorine	atoms ?
	(A) CoCl ₃ .5NH ₃	(B) CoCl ₃ .3NH ₃	(C) CoCl ₃ .6NH ₃	(D) None

55. Which of the following complexes show linkage isomerism ?

	(A) [CO(en) ₂ Cl ₂]Cl	(B) [Pd(dipy)(SCN) ₂]								
	(C) [CO(NH ₃) ₄ Cl ₂]Cl	(D) CrCl ₃ .6H ₂ O								
56.	Spin only magnetic moment of the	e compound Hg[Co(SCN) ₄] is								
	(A) √ <u>3</u> (B) √ <u>8</u>	(C) √15 (D) √24								
57.	Which of the following shows lin	nkage isomerism?								
	(A) [Co(en) ₃]Cl ₃	(B) [Co(NH ₃) ₆] [Cr(en) ₃]								
	(C) [Co(en) ₂ NO ₂ Cl]Br	(D) [Co(NH ₃) ₅ Cl]Br ₂								
58.	Which of the following will give n	naximum number of isomers ?								
	(A) [Co(NH ₃) ₄ Cl ₂]	(B) [Ni(en)(NH ₃) ₄] ²⁺								
	(C) $[Ni(C_2O_4)(en)_2]$	(D) [Cr(SCN) ₂ (NH ₃) ₄] ⁺								
59.	Which of the following will exhibi	t maximum ionic conductivity ?								
	(A) $K_4[Fe(CN)_6]$	(B) [Co(NH ₃) ₆]Cl ₃								
	(C) [Cu(NH ₃) ₄]Cl ₂	(D) [Ni(CO) ₄]								
60.	Which of the following shell form	an octahedral complex ?								
	(A) d ⁴ (low spin) (B) d ⁸ (high spin))(C) d ⁶ (high spin)(D) None of these								
61.	Which of the following ions has zero	o crystal field stabilisation energy in octahedral								
	field ?									
	(A) Mn ³⁺ (low spin)	(B) Co ²⁺ (low spin)								
	(C) Cu ²⁺ (high spin)	(D) Fe ³⁺ (high spin)								
62.	Which of the following species re	present the example of dsp ² hybridization?								
	(A) $[Fe(CN)_6]^{3-}$ (B) $[Ni(CN)_4]^{2-}$	(C) $[Ag(CN)_2]^-$ (D) $[Co(CN)_6]^{3-}$								
63.	Which of the following organome	etallic compounds of σ and π bonded ?								

(A) $[Fe(\eta^5 - C_5H_5)_2]$	(B) $[PtCl_3(\eta^2 - C_2H_4)]$
(C) [Co(CO) ₅ NH ₃] ²⁺	$(D) AI(CH_3)_3$

- **64**. In which case(s) there is change in oxidation number? (A) SO₂ gas is passed into $Cr_2O_7^{2-}/H^+$ (B) $Cr_2O_7^{2-}$ is made alkaline (C) CrO₂Cl₂ is dissolved in NaOH (D) Aqueous solution of CrO_4^{2-} is acidified Which of the following type of bonds are present in $CuSO_{a}.5H_{2}O?$ 65. (1) Electrovalent (2) Covalent (3) Coordinate (A) 1 and 2 only (B) 1 and 3 only (C) 2 and 3 only (D) 1, 2 and 3 For the reaction, N₂ + 3H₂ \rightarrow 2NH₃, $\frac{\kappa_p}{\kappa_c}$ is equal to 66. (D) $\frac{1}{(RT)}$ (B) $\frac{1}{RT}$ (C) (RT)² (A) RT What is the energy of radiation that has a frequency of 9.00 × 10¹¹ cycles/sec? 67. (Remember that Planck's constant, h, has a value of 6.63×10^{-34} J-sec.) (A) 1.66 × 10⁻⁴⁵ J (B) 5.97 × 10⁻²² J (D) 5.00 × 10⁻²² J (C) 4.99 × 10⁻²⁷ J The approximate radius of a H-atom is 0.0529 nm and that of proton is 68.
 - 1.5×10^{-15} m. Assuming both the hydrogen atom and the proton to be spherical, calculate fraction of the space in an atom of hydrogen that is occupied by the nucleus.

(A) 2.3×10^{-14} (B) 2.3×10^{-13} (C) 2.3×10^{-12} (D) 2.3×10^{-11}

69. The normalized wave function of 1s orbital is:- $\psi = \sqrt{Ne^{-\frac{2r}{a_0}}}$ and the radial distribution function is = $4\pi r^2 \psi^2$

Where

 $N = \frac{Z^3}{\pi a_0^3}$

Calculate the most probable distance at which the 1s electron of hydrogen-like atom with atomic number Z is to be found.

(A) $\frac{a_0}{2Z}$ (B) $\frac{a_0}{Z}$ (C) $\frac{2a_0}{Z}$ (D) $\frac{4a_0}{Z}$

70. The orbital angular momentum of an electron in 2s orbital is:-

(A) $+\frac{1}{2} \cdot \frac{h}{2\pi}$ (B) zero (C) $\frac{h}{2\pi}$ (D) $\sqrt{2} \cdot \frac{h}{2\pi}$

71.	1. The energy of an electron in the first Bohr orbit of H atom is -13.6eV. The									
	possible energy	values (s) of the	excited state(s) fo	or electrons in Bohr orbits of						
	hydrogen is(are):-								
	(A) –3.4eV	(B) –4.2eV	(C) –6.8eV	(D) +6.8eV						
72.	If the shortest w	wavelength of H	atom in Lyman s	series is "a" than longest						
	wavelength in ba	almer series of He	e+ is							
	(A) ⁹ / ₅ a	(B) $\frac{6}{5}a$	(C) ^a / ₄	(D) $\frac{5a}{9}$						
73.	The radius of wh	ich of the followin	ig orbit is same as	s that of the first Bohr's orbit						
	of hydrogen ator	m ?								
	(A) He⁺ (n = 2)	(B) Li ²⁺ (n = 2)	(C) Li ²⁺ (n = 3)	(D) Be ³⁺ (n = 2)						
74.	In an atom, two	electrons move r	ound the nucleus	in circular orbits of radii R						
	and 4R. The rati	o of the time take	n by them to com	plete one revolution is:-						
	(A) 1 : 4	(B) 4 : 1	(C) 1 : 8	(D) 8 : 1						
75.	A particle X mov	ing with a certain	velocity has a det	proglie wave length of 1 Å, If						
	particle Y has a mass of 25% that of X and velocity 75% that of X, debroglie									
	wave length of Y will be:-									
	(A) 3Å	(B) 5.33Å	(C) 6.88Å	(D) 48 Å						
76.	For which orbita	l angular probabil	ity distribution is r	maximum at an angle of 45°						
	to the axial direc	tion -								
	(A) $d_{x^2-y^2}$	(B) dz ²	(C) d _{xy}	(D) P _x						
77.	The uncertainty	relation cannot ho	old for the following	g pairs :						
	(A) Position and	momentum	(B) Energy and t	ime						
	(C) Linear mome	entum and angle	(D) Angular mor	nentum and angle						
78.	The uncertainty	in the location of	a particle is equa	al to de-Broglie wavelength						
	then the uncerta	inty in its velocity	is							
	(A) V	(B) ^V / ₂	(C) 2V	(D) $\frac{3}{2}$ V						
79.	The ground state	e energy of a parti	cle in a one dimer	nsional box of length L is E if						
	the length is red	uced to $\frac{L}{2}$ then th	e ground state er	nergy becomes						
	(A) 2F	(B) ^E	The first Bonr orbit of H atom is -13.6 eV. In the excited state(s) for electrons in Bohr orbits of (C) -6.8 eV (D) $+6.8$ eV f H atom in Lyman series is "a" than longes of He ⁺ is (C) $\frac{a}{4}$ (D) $\frac{5a}{9}$ owing orbit is same as that of the first Bohr's orb 2) (C) Li ²⁺ (n = 3) (D) Be ³⁺ (n = 2) ove round the nucleus in circular orbits of radii I taken by them to complete one revolution is:- (C) 1 : 8 (D) 8 : 1 tain velocity has a debroglie wave length of 1 A, that of X and velocity 75% that of X, debroglie (C) 6.88 Å (D) 48 Å oability distribution is maximum at an angle of 45 (C) d _{xy} (D) P _x ot hold for the following pairs : (B) Energy and time gle (D) Angular momentum and angle in of a particle is equal to de-Broglie wavelengt city is (C) 2V (D) $\frac{3}{2}$ V particle in a one dimensional box of length L is E en the ground state energy becomes (C) 4E (D) $\frac{E}{4}$							
	· · · –	2		(-/ 4						

80.	If a 1.00 g body	a 1.00 g body is travelling along the x-axis at 100 cm s ⁻¹ within 1 cm s ⁻¹ , v								
	is the theoretica (A) 6.626×10^{-3} (C) 2.524×10^{-3}	l uncertainty in its º m º m	position? (B) 3.313 × 10 ⁻³⁰ m (D) None							
81.	Which is true ab	out ψ –								
	(A) ψ represents (B) ψ represents (C) Both A and E (D) None of thes	the probability o the amplitude of 3 se	f finding an electr f the electron wav	on around the nucleus						
82.	The rates of diff (A) $PCI_3 > SO_3 >$ (C) $SO_2 > SO_3 >$	usion of SO ₂ , CO > SO ₂ > CO ₂ • PCl ₃ > CO ₂	² , PCl ₃ and SO ₃ a (B) CO ₂ > SO ₂ > (D) CO ₂ > SO ₂ >	re in the following order:- $PCl_3 > SO_3$ $SO_3 > PCl_3$						
83.	At a constant ter for a 5% decrea (A) 5%	mperature what s se in the volume (B) 10%	hould be the perc of gas – (C) 5·26%	entage increase in pressure (D) 4·26%						
84.	Equal masses of The fraction of t	f methane and oxy he total pressure	ygen are mixed in exerted by oxyge	an empty container at 25°C. n is						
	(A) $\frac{1}{3}$	(B) $\frac{1}{2}$	(C) $\frac{2}{3}$	$(D) \left(\frac{1}{3}\right) \left(\frac{273}{298}\right)$						
85.	A gas has non - the molecules to be	zero value of forc be point masses	e of attraction bet s. The vander Wa	ween the molecules but has Ill's equation for the gas will						
	(A) PV = nRT +	nbP	(B) P (V - nb) = nRT							
	(C) PV = nRT	Y	(D) PV = nRT $-\frac{an^2}{V}$							
86.	For the Berthelo	t equation of state	e, what will be the	value of critical compression						
	factor (Z _c),Berth	elot equation:-	$P = \frac{RT}{V_{m} - b} - \frac{a}{TV_{m}^2}$							
	(A) $\frac{3}{8}$	(B) ¹ / ₂	(C) $\frac{1}{3}$	(D) $\frac{1}{6}$						
87.	Van der waal's diameter of Ar w	constant b of Ar <i>i</i> ill be	gases 3.22 × 10) ⁻⁵ m ³ mol ⁻¹ . The molecular						
	(A) 0.1472 nm	(B) 0.2944 nm	(C) 0.6186 nm	(D) 0.7824 nm						

88. For the following equation of state

 $P = \frac{RT}{V_m} - \frac{B}{V_m^2} + \frac{C}{V_m^3}$; B and C are constants. the value of critical compression factor (Z_e) will be

(A) $\frac{3}{8}$ (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{6}$

89. A driver at a depth of 45 m exhales a bubble of air that is 1.0 cm in radius. Assuming ideal gas behaviour, what will be the radius of this bubble as it breaks the surface of water ?

90. Two flasks of equal volume have been joined by a narrow tube of negligible volume. Initially both flasks are at 300K containing 0.60 mole of O_2 gas at 0.5 atm pressure. One of the flasks is then placed in a thermostate at 600 K. Calculate final pressure of O_2 gas in each flask.

(A) 0.11 atm (B) 0.33 atm (C) 0.66 atm (D) 0.99 atm

- 91. Most probable speed, average speed and RMS speed are related as:-
 - (A) 1 : 1.128 : 1.224(B) 1 : 1.128 : 1.424(C) 1 : 2.128 : 1.224(D) 1 : 1.428 : 1.442
- **92.** Consider the two gaseous equilibria involving SO₂ and the corresponding equilibrium constant at 298 K

$$SO_{2}(g) + \frac{1}{2}O_{2}(g) \Longrightarrow SO_{3}(g) \qquad \dots K_{1}$$
$$2SO_{3}(g) \Longrightarrow 2SO_{2}(g) + O_{2}(g) \qquad \dots K_{2}$$

The values of equilibrium constant are related as :

(A)
$$2K_1 = K_2^2$$
 (B) $\kappa_2^2 = \frac{1}{K_1}$ (C) $\kappa_1^2 = \frac{1}{K_2}$ (D) $\kappa_2 = \frac{2}{K_1^2}$

93. K_1 and K_2 are equilibrium constant for reactions (1) and (2) $N_2(g) + O_2(g) \Longrightarrow 2NO(g)$ (1)

$$IO(g) \Longrightarrow \frac{1}{2} N_2(g) + \frac{1}{2}O_2(g) \qquad \dots \dots (2)$$

Then,

- (A) $\kappa_1 = \left(\frac{1}{\kappa_2}\right)^2$ (B) $\kappa_1 = \kappa_2^2$ (C) $\kappa_1 = \frac{1}{\kappa_2}$ (D) $\kappa_1 = (\kappa_2)^0$
- **94.** A certain weak acid has a dissociation constant of 1.0 × 10⁻⁴. The equilibrium constant for its reaction with a strong base is:-

17

(A) 1.0×10^{-4} (B) 1.0×10^{-10} (C) 1.0×10^{10} (D) 1.0×10^{14}

VPM CLASSES Plot No.-8, Muhana Mandi Road, Jaipur-302020, Mob.:-9001297111, www.vpmclasses.com

95. The hydrogen ion concentration of a slightly acidic water solution can be represented by:-

(A) 14 – pOH (B) Kw/pOH (C) 10^{-pOH} (D) 10^{-(14 – pOH)}

- **96.** The following equilibria are given :
 - $N_{2} + 3H_{2} \rightleftharpoons 2NH_{3} \qquad \dots K_{1}$ $N_{2} + O_{2} \rightleftharpoons 2NO \qquad \dots K_{2}$ $H_{2} + \frac{1}{2}O_{2} \rightleftharpoons H_{2}O \qquad \dots K_{2}$

The equilibrium constant of the reaction

- $\begin{array}{l} 2\mathsf{NH}_3 + \frac{5}{2} \; \mathsf{O}_2 \rightleftharpoons 2\mathsf{NO} + 3\mathsf{H}_2\mathsf{O}, \text{ in terms of } \mathsf{K}_1, \; \mathsf{K}_2 \; \text{and } \; \mathsf{K}_3 \; \text{is } \\ (\mathsf{A}) \; \mathsf{K}_1 \; \mathsf{K}_2' / \mathsf{K}_3 \qquad (\mathsf{B}) \; \mathsf{K}_1 \; \mathsf{K}_3^2 / \mathsf{K}_2 \qquad (\mathsf{C}) \; \mathsf{K}_2 \; \mathsf{K}_3^3 / \mathsf{K}_1 \qquad (\mathsf{D}) \; \mathsf{K}_1 \; \mathsf{K}_2 \; \mathsf{K}_3 \end{array}$
- **97.** Two flasks A and B of equal volume containing 1 mole and 2 mole of O_3 respectively, are heated to the same temperature. When the reaction $2O_3 \rightarrow 3O_2$ practically stops, then both the flasks shall have
 - (A) The same ratio $[O_2] [O_3]$ (B) The same ratio : $[O_2]^{3/2} [O_3]$
 - (C) Only O₂ (D) The same time to reach equilibrium
- 98. A saturated solution of Na₂SO₄, with excess of the solid, is present at equilibrium with its vapour in a closed vessel. How many phases and components are present respectively?

(A)2,3 (B) 1,4 (C) 1,3 (D) 2,5

- **99.** According to Langmuir adsorption isotherm, the amount of gas adsorbed at very high pressures
 - (A) Reaches a constant limiting value
 - (B) Goes on increasing with pressure
 - (C) Goes on decreasing with pressure
 - (D) Increase first and decreases later with pressure
- **100.** When temperature is lowered and pressure is raised, the adsorption of a gas on a solid
 - (A) Decreases

- (B) Increases
- (C) Remains unaffected (D) Decreases first then increases

101. The experimental adsorption data of a gas on a solid surface at temperature T exhibits the following variation with pressure. V is the volume of gas adsorbed.

1/V

Which of the following statements is true ?

- (A) Heat of coverage varies linearly with temperature
- (B) Adsorption is multilayer
- (C) Heat of adsorption is independent of coverage
- (D) Complete coverage cannot be determined
- **102.** The coagulation power of an electrolyte for arsenious sulphide decrease in the order
 - (A) Na⁺, Al⁺³, Ba²⁺
 - (C) Al⁺³, Ba⁺², Na⁺
- **103.** What is R_M value?
 - (A) $R_{M} = \log(1/R_{f} + 1)$
 - (C) $R_{M} = \log (2/R_{f} 1)$

(B) $R_{M} = \log (1/R_{f} - 1)$ (D) $R_{M} = \log (1/R_{f} - 2)$

(B) PO₄⁻³, SO₄⁻², Cl⁻

(D) CI⁻, SO₄⁻², PO₄⁻³

- **104.** Why are the mixtures of Zn(II) and Mg(II) usually separated employing anion exchanger rather than cation exchanger ? Choose the correct statement ,
 - (A) Zinc is absorbed from 2M acid while Magnesium is not
 - (B) Magnesium is absorbed from 2M acid while Zinc is not
 - (C) Zinc& Magnesium both are absorbed from 2M acid
 - (D) Zinc& Magnesium both are not absorbed from 2M acid
- 105. What is true about synergistic extraction?
 - (A) when two reagents are used together, extracted a metal ion with reduced efficiency
 - (B) when two reagents are used together, extracted a metal ion with enhanced efficiency
 - (C) when one reagent is used for extraction of two metal ions with enhanced efficiency
 - (D) when one reagent is used for extraction of two metal ions with reduced efficiency

106.	Calculate the we 400 mg of Fe ³⁺ D = 1502	ight of Fe(III) left in 6M HCI after	unext two e	racted from xtractions w	100 ml of a ⁄ith 25 ml o	solution having f diethyl ether :
	(A) 0.54 mg	(B) 0.14 mg	(C) 1	.27 mg	(D) 0.27 m	g
107.	Which of the foll has maximum ac (A) Silica gel (C) Aluminium ox	owing adsorbent dsorptive power? kide	used (B) N (D) C	for column a lagnesium c Calcium carb	adsorption o oxide oonate	chromatography
108.	Which of the foll has maximum ac (A) Sucrose (C) Calcium oxid	owing adsorbent dorptive power? le	used (B) M (D) C	for column lagnesium c Calcium sulp	adsorptive o carbonate hate	chromatography
109.	An increase in pH contains (A) –COOH grou	l causes an increa 1p (B) –OH g	ase in roup	the sorption (C) $-SO_{3}H$	capacity if a group	n ion exchanger (D) All of these
110.	An ion exchange on (A) the acidity of (B) the concentra (C) temperature (D) All of the abo	process is reverse the solution ation and charge	sible. ⁻ of the	The equilibri cations part	um of this p ticipating in	rocess depends the exchange
111.	What is the pH ra (A) 1-14	ange in which str (B) 1-9	ongly (C) 1	basic anion -6	exchangers (D) 7-14	can be used?
112.	Anion exchange (A) quaternary an (C) quaternary si	resins with simila mmonium bases ulphonium bases	ar iono	genic group (B) tertiary (D) All of th	os are amines ne above	

113. When amino acids are separated on ion exchange resins, the following variables

are taken into consideration

- (A) choice of ion exchanger
- (B) pH
- (C) concentration of ionic species in the eluting agent
- (D) All of the above are correct

114. In hot alkaline solution, Br_2 disproportionates to Br^- and BrO_3^-

 $3Br_2 + 6OH^- \rightarrow 5Br^- + BrO_3^- + 3H_2O$

hence, equivalent weight of Br₂ is

(molecular weight = M)

- (A) $\frac{M}{6}$ (B) $\frac{M}{5}$ (C) $\frac{3M}{5}$ (D) $\frac{5M}{3}$
- 115. 10 L of hard water required 0.56 g of lime (CaO) for removing hardness. Hence, temporary hardness in ppm of CaCO₃ (parts per million i.e. 10⁶) is :
 (A) 100 (B) 200 (C) 10 (D) 20
- **116.** 20 mL of x M HCl neutralises completely 10 mL of 0.1 M NaHCO_3 and a further 5 mL of $0.2 \text{ M Na}_2\text{CO}_3$ solution to methyl orange end-point. The value of x is : (A) 0.167 M (B) 0.133 M (C) 0.150 M (D) 0.200 M
- **117.** 10 mL of $NaHC_2O_4$ solution is neutralised by 10 mL of 0.1 M NaOH solution. 10 mL of same $NaHC_2O_4$ solution is oxidised by 10 mL of KMnO₄ solution in acidic medium. Hence, molarity of KMnO₄ is :

(A) 0.1 M (B) 0.2 M (C) 0.04 M (D) 0.02 M

- **118.** 40 mL of 0.05 M solution of sesquicarbonate $(Na_2CO_3 \cdot NaHCO_3 \cdot 2H_2O)$ is titrated against 0.05 M HCl. x mL of HCl is used when phenolphthalein is the indicator and y mL of HCl is used when methyl orange is the indicator in two separate titrations, hence (y x) is :
 - (A) 80 mL (B) 30 mL (C) 120 mL (D) none of these
- **119.** I_2 obtained from 0.1 mol of CuSO₄ required 100 mL of 1 M hypo solution, hence, mole percentage of pure CuSO₄ is :
 - (A) 100 (B) 50 (C) 25 (D) 40

120. 10 mL of a blood sample (containing calcium oxalate) is dissolved in acid. It required 20 mL of 0.001 M KMnO₄ (which oxidises oxalate to carbon dioxide) hence, Ca²⁺ ion in 10 mL blood is :

Answer Key

BHU CY FMTP

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Answer	A	В	C	D	C	D	В	D	A	C	Α	A	C	C	В	A	A	В	D	A
Question	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Answer	D	D	A	B	A	A	С	C	В	В	D	D	В	С	В	D	B	D	D	В
Question	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Answer	Α	В	Α	D	A	В	С	D	D	В	С	A	В	C	В	C	С	D	A	A
Question	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Answer	D	В	С	A	C	D	В	Α	В	В	Α	В	D	A	В	С	C	A	C	D
Question	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Answer	D	D	С	A	D	A	В	C	В	С	Α	C	C	С	D	C	В	A	Ah	В
Question	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	1.16	117	118	119	120
Answer	В	C	В	A	B	D	C	C	В	D	Α	D	D	C	B	D	C	A	A	D

Hint and Solution

1.(A)

 $C_1^* = (C.W); Me (wedge) so (S)$

The cyclohexane ring has one plane of symmetry across 1, 4 positions, cutting all 4 substituents in to half. The similar groups in cis orientation at 1,3 positions also show plane of symmetry.

- **4.(D)** Bulky groups present at ortho position inhibit delocalisation of lone pair of electrons present on nitrogen and thus increase basicity.
- **5.(C)** -m, -I effect of $-NO_2$ group at o, p position.

(iv) The carbocation rearranges by 1,2-bond shift (ring expansion) and another carbocation (III) is formed.

(v) Finally H₂O molecule attacks and alcohol is formed.

7.(B) $(1) - 8\pi e^{-}$ This compound is not aromatic. It is antiaromatic.

8.(D) (3) (1) OH (2E, 4S)

9.(A) (a) 1S, 2S-1-bromo-1, 2-diphenylpropane

- (i) This is Pinacol-Pinacolone rearrangement reaction.
- (ii) In step-1, the most stable C⁺ is formed, by loss of $-H_2O$ molecule.
- (iii) Simultaneously this is accompanied by an aryl shift (of e⁻ rich ring, to form

the non classical Phenonium ion). After H⁺ exchange the final product, a ketone is formed.

17.(A) Reimer-Tieamann reaction

 $\mathsf{CHCl}_{3} + \overset{\circ}{\mathsf{O}}\mathsf{H} \cong : \overset{\circ}{\mathsf{C}}\mathsf{Cl}_{3} \longrightarrow : \mathsf{CCl}_{2}$

Pinacol-Pinacolone rearrangement

24.(B) Monosubstituted acetylenes show band at 2140 – 2100 cm⁻¹ (– C = C – stretch) & C – H stretching band appears in the region 3333 – 3268 cm⁻¹ & C – H bending appears in the region 700 – 610 cm⁻¹. Thus, the probable structure of the compound is $CH_3 - C = C - H$.

25.(A) Some of the important bands are :

(i) Ar - H str; ~ 3030 cm^{-1}(ii) $C - H str in CH_3$; 2850 - 2960 cm ^{-1}(iii) C = C str; 1600, 1580, 1460 , cm^{-1}

(iv) C – H bending for monosubstituted benzene; 730 - 770 cm⁻¹

26.(A) $CH_3 - N - C - OCH_2 - CH_3$ d | || q t (2.80) H O (4.10) (1.20) (broad) δ 5.30

32. (D) T-shaped, sp³d hybridisation, two lone pairs are occupying eqatorial positions.

33.(B) The ionization will take place as follows :

$$1s^{2} 2s^{2} 2p^{6} 3s^{2} \xrightarrow{-2e^{-}} 1s^{2} 2s^{2} 2p^{6} \xrightarrow{-e^{-}} 1s^{2} 2s^{2} 2p^{5};$$

Here the electronic configurations of the product ions indicate the following order,

 $IE_3 >> IE_2 > IE_1$; In third ionization the e⁻ is removed from completely filled subshell, so IE_3 is very high as compared to IE_2 .

34. (C)
$$XeF_2 + H_2O \rightarrow XeO_2F_2$$
.
35. (B) Na = 1s² 2s² 2p⁶ 3s¹

n = 3,
$$\ell$$
 = 0, m = 0, s = $+\frac{1}{2}$

- 36. (D) BeO is basic oxide and reacts only with an acid to form the salt.
- **37.(B)** $O^-_{(2s^2p^5)} + e^- \rightarrow O^{2-}_{(2s^2p^6)}$

It is endothermic. It is difficult to add e⁻ in -vely charge ion.

38.(D) O²⁻, F⁻, Na⁺, Mg and Al³⁺ have same number of electrons (i.e. 10 electrons) but different nuclear charges and therefore, they are isoelectronic species.

For isoelectronic species ionic radii $\propto \frac{1}{\text{nuclear charge}}$.

So, correct order is ${}_{8}O^{2-} > {}_{9}F^{-} > {}_{11}Na^{+} > {}_{12}Mg^{2+} > {}_{13}Al^{3+}$.

39. (D) The bond energy is inversely proportional to the size of the two bonded atoms.

Bond dissociation energy (Kcal/mol) 136 105 86 70

40.(B) Hydration energy increases with increase of **charge to size** ratio of the ion. **41.(A)** $H_2CO_3 \rightarrow sp^2$ Hybridisation.

42. (B) CIF_3 has T shape structure and axial bonds are longer than equatorial bond.

- **44. (D)** The number of lone pairs of electrons on the central atom of various species is $SF_4(one)$; $CIO_3^-(One)$; $XeF_4(2)I$; $I_3^-(3)$.
- **45.(A)** Greater the electronegativity of central atom and more the number of lone pairs on it copreses the bond angle. Thus, the bond order is :

$$Nn_{3} > n_{2} O > Pn_{3} > n_{2} O$$

46. (**B**)
$$O_2F_2 = 0 - 0$$
; $H_2O_2 = 0 - 0$
F

- 47. (C) Unpaired e⁻ is present in KO₂ [In Antibonding unpaired e⁻]
- 48. (D) $d\pi p\pi$ bonding.
- **49.** (**D**) $BF_3 + (HBO_3)_4 \rightarrow B_2H_6$.
- **50. (B)** $P_4O_{10} + 6H_2O \longrightarrow 4H_3PO_4$
- **51.(C)** NO \rightarrow NO⁺ + e⁻

 $Fe^{3+} + e^- \rightarrow Fe^{2+}$

Oxidation state of Fe is +2 and NO⁺ is ligand.

52.(A) ZnCl₂ — Zn²⁺ [3d¹⁰]

no unpaired e⁻ - Diamagnetic

53.(B) Cr_2O_3 – Amphoteric (This oxide is in the intermediate oxidation states of Cr)

$$Cr (+3) = \begin{array}{c} Cr_{2}O_{3} \\ Cr(OH)_{3} \end{array} \quad \text{amphoteric} \quad \begin{bmatrix} Cr^{3^{+}} & \text{chromium (II)} \\ (chromous) \\ Cr(OH)_{4} & \text{chromite} \end{bmatrix}$$

54. (C) $COCl_3.6NH_3$ has 3 ionisable chlorine atoms.

55. (B)
$$[Pd(dipy)(SCN)_2] [Pd(dipy)(NCS)_2]$$

- **56.(C)** $[Co(SCN)_4]^{2-}$, cobalt is +2 with three unpaired electrons in 3d. Thus, $\mu = \sqrt{15}$ BM.
- **57.(C)**[CO(en)₂NO₂Cl]Br shows linkage isomerism.
- **58.(D)** Cis, trans and linkage isomers are shown by $[Cr(SCN)_2(NH_3)_4]^+$ complex.

Linkage isomerism : $[Cr(SCN)_2(NH_3)_4]^+$; $[Cr(NCS)_2(NH_3)_4]^+$

59.(A) K_4 [Fe(CN)₆] ionizes to give five ions giving maximum conductivity.

 $K_4[Fe(CN)_6] \rightarrow 4K^+ + [Fe(CN)_6]^{-4}$

- **60.(A)** d⁴ low spin complex will have two d-orbitals vacant required for d²sp³ hybridization to give an octahedral complex.
- **61.(D)** Fe³⁺ (high spin) $t_{2g}^{3} eg^{2}$

CFSE =
$$-[0.4 \times nt_{2g} + 0.6 n_{eg}] = -[0.4 \times 3 + 0.6 \times 2] = 0$$

- **62.(B)** $[Ni(CN)_4]^{2-}$ is square planar with dsp² hybridization.
- **63.(C)**CO ligand is bonded to the metal through σ and π bonding.
- **64.(A)** $Cr_2O_7^{2-}$ (+6) + SO_4 (+4) $\rightarrow SO_4^{2-}$ (+6) + Cr^{3+} (+3)
- **65.(C)** $CuSO_4.5H_2O$ can be written as $Cu^{2+}SO_4^{2-}$. Hence, electrovalent (ionic) bond is present, coordinate bond is formed between Cu2+ and SO_4^{2-} and covalent bond is present in SO_4^{2-} .

66.(D)
$$K_p = K_c (RT)^{\Delta n} = K_c (RT)^{-2}$$

 $K_p (RT)^{-2}$

$$\frac{1}{K_c} = (RT)^2 = (RT)^2$$

67.(B) E = h_v = (6.63 × 10⁻³⁴ J-sec)(9.00 × 10¹¹/sec) = 5.97 × 10⁻²² J

68.(A)
$$V_{nucleus} = \frac{4}{3} \pi (r_N)^3$$

 $V_{hydrogen} = \frac{4}{3} \pi (r_H)^3$
 $0.0529 \text{ nm} = 0.0529 \times 10^{-9} \text{ m}$
 $\frac{V_{nucleus}}{V_{hydrogen}} = \frac{r_N^3}{r_H^3} = \frac{(1.5 \times 10^{-15})^3}{(0.0529 \times 10^{-9})^3} = 2.3 \times 10^{-12}$
69.(B) $\frac{d}{dr} [4\pi r^2 \text{Ne}^{-2Zr/a_0}] = 0$
 $4\pi \text{Ne}^{-2Zr/a_0} (2r) + 4\pi r^2 \text{Ne}^{-2Zr/a_0} \left(\frac{-2Z}{a_0}\right) = 0$
 $8\pi r \text{Ne}^{-2Zr/a_0} \left[1 - \frac{rZ}{a_0}\right] = 0$
 $r = \frac{a_0}{Z}$

70.(B) Orbital angular momentum (m v r) = $\frac{h}{2\pi}\sqrt{l(l+1)}$ For 2s orbital I (azimuthal quantum number) = 0

: orbital angular momentum = $\frac{h}{2\pi}\sqrt{0(0+1)} = \frac{h}{2\pi}\sqrt{0} = 0$

71.(A) The energy of an electron in Bohr's orbit of hydrogen atom is given by the expression.

$$E_n = -\frac{Constant}{n^2}$$

Where n takes only integral values. For the first Bohr's orbit, n = 1 and it is given that $E_1 = -13.6eV$

4

Hence, $E_n = -\frac{13.6eV}{n^2}$ of the given values of energy, only -3.4eV can be obtained by substituting n = 2 in the above expression.

72. (B) Shortest wavelength of H atom in Lyman series transition required maximium energy —

$$n_{2} = \infty, \qquad n_{1} = 1$$

$$\frac{1}{\lambda} = R_{H}Z^{2} \left[\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right]$$

$$\frac{1}{\lambda} = R_{H}1^{2} \times \frac{1}{1^{2}}$$

$$\frac{1}{\lambda} = R_{H} \qquad \Rightarrow \lambda = \frac{1}{R_{H}} = a$$

Longest wavelength in Balmer series of He⁺ VPM CLASSES Plot No.-8, Muhana Mandi Road, Jaipur-302020, Mob.:- 9001297111, www.vpmclasses.com 33

Linear momentum does not correlate with angle.

78.(A) $\Delta x = \text{de-Broglie wavelength} = \frac{h}{mV}$ From uncertainty principle $\Delta x \Delta p \sim h$ $\Delta p \sim \frac{h}{\Delta x} = \frac{h}{\frac{h}{mV}} = mV$ $\Delta p = mV$...(i) $p = \frac{mV}{\Delta p} = m\Delta V$...(ii) Compare Equi. (i) and (ii) $\Delta V = V$ 79.(C) The ground state energy $E = \frac{n^2 h^2}{8m^2}$ (n = 1) if the length is reduced $\frac{L}{2}$ $L = \frac{L}{2}$ E' = $\frac{n^2 h^2}{8m(\frac{L}{2})^2} = \frac{4n^2 h^2}{8mL^2}$ (n = 1) E' = 4E 80.(D) ∆v = 101 – 99 = 2 cm s⁻¹ = 0.02 m s⁻¹ $\Delta \mathbf{x} = \frac{h}{4\pi m \Delta \upsilon} = \frac{6.626 \times 10^{-34}}{4 \times \frac{22}{7} \times 1 \times 10^{-3} \times 0.02} = 2.636 \times 10^{-30} \text{ m}$ 81. (D) (A) ψ is wave function and the probability of finding electron around nucles is given by $|\psi^2|$. (B) ψ is complete wave function, not only amplitude of wave function. Amplitude of wave function is normalisation constant.

82.(D) Rate of diffusion $\propto \sqrt{\left[\frac{1}{M}\right]}$

83.(C) Use
$$P \propto \frac{1}{V}$$

 $\frac{P_2}{P_1} = \frac{V_1}{V_2}$ [x = percentage increase in pressure]
 $\frac{P_1 + xP_1}{P_1} = \frac{V_1}{(1 - .05)V_1}$

VPM CLASSES Plot No.-8, Muhana Mandi Road, Jaipur-302020, Mob.:-9001297111, www.vpmclasses.com 35

$$1 + x = \frac{1}{1-05} = \frac{1}{0.95} = \frac{100}{95}$$

$$x = \left(\frac{100}{95} - 1\right) \times 100 - \frac{5}{95} \times 100 = 5.26\%$$
84.(A) n(CH₄) = $\frac{m}{(16gmol^{-1})}$; n(O₂) = $\frac{m}{(32gmol^{-1})}$

$$\frac{P_{0, r}}{P} = \frac{\frac{m}{(32gmol^{-1})}} = \left(\frac{\frac{1}{(32)}}{(16)^{+}(\frac{1}{32})} = \frac{16}{32+16} = \frac{1}{3}$$
85.(D) For molecules to be point masses, b = 0
Hence $\left[P + \frac{an^{2}}{V^{2}}\right] V = nRT or PV = nRT - \frac{an^{2}}{V}$
86.(A) Put $\frac{\partial P}{\partial V_{m}} = 0$ & $\frac{\partial^{2} P}{\partial^{2} V_{m}} = 0$ to get critical const.

$$P_{c} = \frac{1}{12} \left(\frac{2aR}{3b^{2}}\right)^{\frac{1}{2}}$$

$$V_{c} = 3b$$

$$T_{c} = \frac{2}{3} \left(\frac{2a}{3bR}\right)^{\frac{1}{2}}$$

$$Z_{c} = \frac{P_{v}V_{c}}{RT_{c}} - \frac{1}{12} \left(\frac{2aR^{2}}{3b^{2}}\right)^{\frac{1}{2}} - \frac{3b}{R2(2a)^{2}} \times 3(3bR)^{\frac{1}{2}} = \frac{1}{12} \times \frac{3 \times 3\sqrt{3}}{\sqrt{3} \times 2} = \frac{9}{24} = \frac{3}{8}$$
87.(B) b = 4 × N_{A} × $\frac{4}{3} \pi r^{3}$
get r = 0.1472 and hence get d = 2r.
88.(C) Use $\left(\frac{\partial P}{\partial V_{m}}\right) = 0$ & $\left(\frac{\partial^{2} P}{\partial V_{m}}\right) = 0$ to get

$$P_{d} = \frac{B^{3}}{27C^{2}} : V_{c} = \frac{30}{B} \text{ and } T_{c} = \frac{B^{2}}{3RC}$$
Now, $P_{c}V_{c} = Z_{c}RT_{c} \quad Z_{c} = \frac{P_{v}V_{c}}{R_{c}} = \frac{1}{3} \qquad \Rightarrow (C)$
89.(B) Atmospheric pressure = 1 atm.
Pressure due to depth of 45 m = pgh
where ρ = density of water = 1g cm^{-3} = 1000 kg m^{-3}, g = 9.81 m s^{-2}, h = 45 m
 $\rho gh = 1000 \times 9.81 \times 45 N m^{-2} = \frac{1000 \times 9.81 \times 45}{101325} atm = 4.36 atm$
 $(\because 1 atm = 1.01325 \times 10^{5} N m^{-2})$

 \therefore P₁ = atmospheric pressure + ρ gh = 1 + 4.36 = 5.36 atm $P_{2} = 1 \text{ atm}$ $V_1 = \frac{4}{2}\pi r^3 = \frac{4}{2} \times \pi \times (1)^3 \text{ cm}^3$ $V_2 = \frac{4}{3}\pi r^3$ = volume of bubble at P₂ (at the surface) using $P_1V_1 = P_2V_2$ $V_2 = \frac{P_1 V_1}{P}$ $\frac{4}{3}\pi r^{3} = \frac{5.36 \times \frac{4}{3}\pi (1)^{3}}{1}$ $r^3 = 5.36 \text{ cm}^3$ r = 1.75 cm **90.(C)** For flask 1, $P_1V_1 = n_1RT_1$ For flask 2, $P_2V_2 = n_2RT_2$ Since, both flasks are of equal volume and have been joined by a narrow tube, hence pressure is also same in both flasks. $\therefore P_1V_1 = P_2V_2$ \therefore n₁RT₁ = n₂RT₂ $\therefore \qquad \frac{n_1}{n_2} = \frac{T_2}{T_1} = \frac{600}{300} = \frac{2}{1} = \frac{4}{2}$ but $n_1 + n_2 = 0.6$ mol \therefore n₁ = 0.4 mol at 300 K n₂ = 0.2 mol at 600 K volume of the flasks containing 0.3 mol O₂ in each, V = $\frac{nRT}{P} = \frac{0.3 \times 0.0821 \times 300}{0.5}$ L hence, final pressure $P_f = \frac{n_2 R T_2}{V} \left(\text{or} = \frac{n_1 R T_1}{V} \right) = \frac{0.2 \times 0.0821 \times 600 \times 0.5}{0.3 \times 0.0821 \times 300} = 0.66 \text{ atm}$ **91.(A)** $\mathbf{u}_{MP} : \mathbf{u}_{AV} : \mathbf{u}_{rms} :: \sqrt{\left(\frac{2RT}{M}\right)} : \sqrt{\left(\frac{8RT}{\pi M}\right)} : \sqrt{\left(\frac{3RT}{M}\right)}$ $U_{MP} : U_{AV} : U_{rms} :: \sqrt{2} : \sqrt{8/\pi} : \sqrt{3}$ $U_{MP} : U_{AV} : U_{rms} :: 1 : 1.128 : 1.224$ **92.(C)** SO₂ (g) + $\frac{1}{2}$ O₂(g) \implies SO₃(g)K₁ $SO_3(g) \Longrightarrow SO_2(g) + \frac{1}{2}O_2(g) \qquad \dots \frac{1}{\kappa_1}$ $2SO_3(g) \implies 2SO_2(g) + O_2(g)$<u>1</u>

- **98.(A)** The two components are Na₂SO₄ and H₂O (proton transfer equilibria to give HSO_{4}^{-} etc. do not change the number of independent components) so C=2. There are three phases present (solid salt, liquid solution, vapour), so P=3.
- **99.(A)** According to Langmuir adsorption isotherm, the amount of gas adsorbed at very high pressures reaches a constant limiting value.
- **100.(B)** Decrease of temperature and increase of pressure both tend to cause increase in the magnitude of adsorption of a gas on a solid.
- **101.(B)** A/C to BET equation

$$\frac{P}{v_{total}(P_0 - P)} = \frac{1}{V_{mono}C} + \frac{C - 1}{v_{mono}C} \left(\frac{P}{P_0}\right) \qquad \dots(i)$$

This equi. divided by P
$$\frac{1}{v_{total}(P - P_0)} = \frac{1}{PV_{mono}C} + \frac{C - 1}{v_{mono}C(P_0)}$$

Let $y = \frac{1}{v_{total}}$
 $x = \frac{1}{P}$
 $m = \frac{1}{v_{mono}C}$

Constant C = $\frac{(C-1)}{v_{mono}CP_0}$

So this equation (ii) is the equation of straight line.

BET theory assumes that physical absorption resulting in the formation of multilayers. So the Adsorption is multilayer.

102.(C) A/C to Hardy and Schulze Rules. The efficacy of an ion to cause coagulation depends upon its valency. Thus

Al⁺³ > Ba⁺² > Na⁺

103. (B) The R_f values of individual functional groups in a chemically related compounds are very close. So the term R_M is additive and is composed of the partial R_M values of the individual functional groups or other groupings of atoms in the molecule. Mathematically

 $R_{M} = \log (1/R_{f} - 1).$

- 104. (A) Several metal ions (e.g., Fe, Al, Zn, Co, Mn etc.) can be absorbed from hydrochloric acid solutions on anion exchange resins owing to the formation of negatively charged chloro complexes. Each metal is absorbed over a well defined range of pH and this property can be used as the basis of a method of separation. Zinc is absorbed from 2M acid while Magnesium is not thus by passing a mixture of Zn(II) and Mg(II) through a column of anion exchange resin a separation is effected. Zn(II) is eluted with dilute nitric acid.
- **105.** (B) The phenomenon in which two reagents when used together, extracted a metal ion with enhanced efficiency compared to their individual action is called synergism. A common form of synergistic extraction is that in which a metal ion, Mⁿ⁺ is extracted by a mixture of an acidic chelating reagent, HR and an uncharged basic reagent, S. The joint action of the reagents is especially pronounced in those cases where the coordination capacity of the metal ion is not fully achieved in the MR_n chelate, then the extractant S gives a mixed complex, MR_nS_x which is extracted with much greater efficiency than the parent chelate. An example is the synergistic influence of zinc in the extraction and AAS (Atomic Absorption Spectrometric) determination of trace cadmium in water.

106. (D) Amount left unextracted,

· ·

$$W_n = W\left(\frac{V_w}{DV_0 + V_w}\right)$$

where, W = amount of solute, V_w = volume of aqueous solution, D = 150, V_0 = volume of organic phase.

$$W_n = 400 \left(\frac{100}{150 \times 25 + 100}\right)^2 = 400 \left(\frac{100}{3850}\right)^2 = 0.269 \text{ mg} \text{ ; (0.27 mg Ans)}$$

- **107. (C)** The adsorptive power increase in the order : Calcium carbonate < silica gel < magnesium oxide < aluminium oxide.
- **108.** (C) Sucrose < calcium sulphate < magnesium carbonate < calcium oxide.
- **109.** (B) An increase in pH causes an increase in the sorption capacity if an ion exchanger contains weak groups like –COOH and –OH.
- **110.** (D) The equilibrium process depends on all these factors.

- **111. (A)** Strongly basic anion exchangers are used within a broad pH interval of 1-14 and weakly basic anion exchangers, within a narrower range of 1-9.
- **112. (D)** Sulphonium bases are coordination compounds, derivatives of thioethers, e.g.,

 $2C_2H_5I + K_2S \rightarrow (C_2H5)_2S + 2KI$

Sulphur adds alkyl halides, salts, etc.

$$(\mathsf{C}_2\mathsf{H}_5)_2\mathsf{S} + \mathsf{C}\mathsf{H}_3\mathsf{I} \to [(\mathsf{C}_2\mathsf{H}_5)_2\mathsf{S}(\mathsf{C}\mathsf{H}_3)]\mathsf{I}$$

- 113. (D) All these variables are taken into consideration.
- **114.** (C) Each half-reaction, oxidation and reduction should involve equal number of electrons, balance it. $3Br_2 = 5e^{-1}$

In the disproportionation reaction.

net equivalent weight = $(Eq. wt.)_{O} + (Eq. wt.)_{R}$

$$\frac{1}{2} Br_{2} (\mathbf{0}) \to BrO_{3}^{-} (\mathbf{+5}) \qquad (Eq. wt.)_{0} = \frac{M}{10}$$

$$\frac{1}{2} Br_{2} (\mathbf{0}) \to Br^{-} (\mathbf{-1}) \qquad (Eq. wt.)_{R} = \frac{M}{2}$$

$$Net = \frac{M}{10} + \frac{M}{2} = 0.6 M$$

- **115.** (B) Temporary hardness is due to HCO_3^- of Ca^{2+} and Mg^{2+} $Ca(HCO_3)_2 + CaO$ [56 g(0.56 g)] $\rightarrow 2CaCO_3$ [200 g(2 g)] + H₂O 10 L (= 10⁴ g) hard water contains = 2 g CaCO₃ 10⁶ g (ppm) hard water contains = 200 g CaCO₃
- **116.** (D) Phenolphthalein indicates only 50% reaction of Na_2CO_3 upto $NaHCO_3$. $Na_2CO_3 + HCI \rightarrow NaHCO_3 + NaCI$ $5 \text{ mL of } 0.2 \text{ M } Na_2CO_3 (= 0.4 \text{ N}) \text{ is neutralised}$ N_1V_1 (HCI) = N_2V_2 (Na_2CO_3) $x \times 20 = 0.4 \times 2.5$ x = 0.05 N = 0.05 M HCI

117. (C) 10 mL of x M NaHC₂O₄ = 10 mL of 0.1 M NaOH $\begin{cases} H^+ \text{ ion is neutralised} \\ \therefore xM = xN \end{cases}$

$$\therefore$$
 10 × x = 10 × 0.1

x = 0.1 M VPM CLASSES Plot No.-8, Muhana Mandi Road, Jaipur-302020, Mob.:- 9001297111, www.vpmclasses.com