GATE SCIENCE CHEMISTRY SOLVED SAMPLE PAPER

* DETAILED SOLUTIONS

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

GATE - CHEMISTRY

MOCKTEST PAPER

- There are total of 65 questions in this paper which are of multiple choice type or numerical answer type.

Questions Q. 1 - Q. 25 carry 1 mark each. Questions Q. 26 Q. 55 carry 2 marks each. The 2 marks questions include two pairs of common data questions and two pairs of linked answer questions depends on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is not attempted, then the answer to the second question in the pair will not be evaluated.

- Questions Q. 56-Q.65 belong to General Aptitude (GA) section and carry a total of 15 marks. Questions $Q .56$ Q. 60 carry 1 mark each, and questions Q. 61 - Q .65 carry 2 marks each.
- There will be negative marking of $1 / 3$ marks for each wrong answer for 1 mark questions. For all 2 marks questions $2 / 3$ marks will be deducted for each wrong answer. However, in the case of the linked answer question pair, there will be negative marks only for wrong answer to the first question and no negative marks for wrong answer to the second question. There is no negative marking for questions of numerical answer type.

TIME: 3 HOURS
MAX. MARKS :
100

For IIT-1AM, JNU, GMTE, NET, NIMCET and Other Entrance Exams

Web Site ww.vpmclasses.com E-mail-vpmclasses@yahoo.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

1. For the reaction $\mathrm{A}+\mathrm{B} \sqcup \mathrm{X}^{\dagger} \rightarrow \mathrm{P}, \mathrm{Ea}=20.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 300 K . The enthalpy changes for the formation of the activated complex from the reactants in $\mathrm{kJ} \mathrm{mol}^{-1}$ is \qquad .
2. For the aldotetroses I-IV, the combination of TRUE statements, among P-T, is
(I)

(II)

(III)

(IV)

$\mathrm{P}=\mathrm{I}$ and II are diastereomers and II and III are enantiomers
Q = I and IV are mesomers and are optically inactive
$R=I$ and III can be interconverted by a base catalysed isomerisation
$\mathrm{S}=$ only I and IV are HIO_{4} cleavable
T = I and III are D-sugars and II and IV are L-sugars
(A) Q, R, T
(B) P, R, T
(C) Q, S, T
(D) P, Q, S
3. Oxidation of X with chromic acid chiefly gives
(A)

(B)

(C)

(D)

4. Given that $\mathrm{E}_{0}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}\right)=-0.04 \mathrm{~V}$ and $\mathrm{E}_{0}\left(\mathrm{Fe}^{2+}, \mathrm{Fe}\right)=-0.44 \mathrm{~V}$, the value of $\mathrm{E}_{0}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}\right)$ is \qquad .
5. The most unstable species among the following is
(A) $\mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$
(B) $\mathrm{Ti}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}$
(C) $\mathrm{Pb}\left(\mathrm{CH}_{3}\right)_{4}$
(D) $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$
6. Consider the following statements:
7. Photosynthesis in plants proceeds with an increase in the energy.
8. Quantum yield is defined as the number of molecules reacted or formed per einstein of light absorbed.
9. Phosphorescence occurs from the lowest vibrational level of triplet state $\left(T_{1}\right)$.

Which of the above statements are correct?
(A) 1 and 2
(B) 1 and 3
(C) 2 and 3
(D) 1, 2 and 3
7. The number of possible geometrical isomers for octahedral $\mathrm{Co}(\mathrm{ox})\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{NH}_{3} \mathrm{Cl}$ complex is \qquad .
8. The products formed in the following reaction are

(A)

(B)

(C) + DMSO
(D) + DMSO
9. Phenol on reaction with formaldehyde and dimethyl amine mainly gives
(A)

(B)

(C)

(D)

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
10. The complexes $\mathrm{V}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$ and $\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$ are both readily oxidized in air to their respective cations. The number of unpaired electrons, respectively, in each are \qquad \& \qquad .
11. The electrophilic aromatic substitution proceeds through a
(A) free radical
(B) sigma complex
(C) benzyne
(D) carbene
12. Match the following

I
(P) Supporting electrolyte
(Q) $\mathrm{Zn}(\mathrm{Hg})_{\mathrm{a}=1}\left|\mathrm{ZnCl}_{2}(\mathrm{aq})\right| \mathrm{Zn}(\mathrm{Hg})_{\mathrm{Q}=2}$
(R) Inversion temperature
(S) Entropy of vapourisation

II
(1) Overpotential
(2) Residual current
(3) Electrolyteconcentration cell
(4) Electrode concentration cell
(5) Trouton's rule
(6) Joule-Thomson expansion
(A) P-2, Q-4, R-6, S-5
(B) P-2, Q-4, R-3, S-6
(C) P-1, Q-4, R-6, S-3
(D) P-1, Q-3, R-6, S-5
13. For the reaction, $\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) 2 \mathrm{Hg}(\mathrm{I})+2 \mathrm{HCl}(\mathrm{aq})$, the correct representation of the cell and the thermodynamic properties $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ at 298 K respectively, are (given : $\mathrm{E}_{298}=$ 0.2684 V and temperature coefficient $=3 \times 10^{-4} \mathrm{VK}^{-1}$)
(A) $\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm})\right| \mathrm{HCl}(\mathrm{aq})\left|\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})\right| \mathrm{Hg}(\mathrm{I}) ; \Delta \mathrm{G}=-51.8 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta \mathrm{H}=-34.5 \mathrm{~kJ}$ $\mathrm{mol}^{-1}, \Delta \mathrm{~S}=-58 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(B) $\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm})\right| \mathrm{HCl}(\mathrm{aq})\left|\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})\right| \mathrm{Hg}(\mathrm{I}) ; \Delta \mathrm{G}=-25.9 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta \mathrm{H}=-34.5 \mathrm{~kJ}$ $\mathrm{mol}^{-1}, \Delta \mathrm{~S}=-29 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(C) $\mathrm{Hg}(\mathrm{I})\left|\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})\right| \mathrm{HCl}(\mathrm{aq})\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm})\right| \mathrm{Pt} ; \Delta \mathrm{G}=-51.8 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta \mathrm{H}=-69 \mathrm{~kJ} \mathrm{~mol}^{-}$ ${ }^{1}, \Delta \mathrm{~S}=-58 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(D) $\mathrm{Hg}(\mathrm{I})\left|\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})\right| \mathrm{HCl}(\mathrm{aq})\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm})\right| \mathrm{Pt} ; \Delta \mathrm{G}=51.8 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta \mathrm{H}=69 \mathrm{~kJ} \mathrm{~mol}^{-1}$, $\Delta \mathrm{S}=58 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
14. In the extraction of cerium IV with 2-thenoyl trifluoro acetone in benzene the distribution ratio was 999 , if the volume of organic phase was 20 ml and that of aqueous phase 50 ml , then \qquad was the percentage extraction.
15. A substance was known to contain $49.06,0.02$ per cent of a given constituent A. The results obtained by two observers using the same substance and the same general technique were:

Observer (1) - 49.01; 49.21; 49.08
Observer (2) — 49.40; 49.44; 49.42
Calculate relative mean error in both the observations respectively?
(A) $0.08 \%, 0.73 \%$
(B) $0.73 \%, 0.08 \%$
(C) $0.65 \%, 0.81 \%$
(D) $0.81 \%, 0.65 \%$
16. The effective nuclear charge $\left(Z^{*}\right)$ for the 1 s electron of ${ }_{8} \mathrm{O}$ according to Slater's rules is nearly \qquad .
17. The formula of the pyrosilicate ion is
(A) $\mathrm{SiO}_{4}{ }^{4-}$
(B) $\mathrm{Si}_{2} \mathrm{O}_{7}{ }^{6-}$
(C) $\mathrm{Si}_{3} \mathrm{O}_{9}{ }^{6-}$
(D) $\mathrm{Si}_{6} \mathrm{O}_{18}{ }^{12-}$
18. The structure of SF_{4} is
(A) Octahedral
(B) Tetrahedral
(C) Trigonal bipyramidal
(D) Square planar
19. An atom X has three valence electrons and atom Y has six valence electrons. The compound formed between them will have the formula.
(A) $\mathrm{X}_{2} \mathrm{Y}_{6}$
(B) XY_{2}
(C) $\mathrm{X}_{2} \mathrm{Y}_{3}$
(D) $\mathrm{X}_{3} \mathrm{Y}_{2}$
20. The perxenate ion $\mathrm{XeO}_{4}{ }^{4-}$ can be prepared by
(A) Direct reaction of Xe with oxygen
(B) Reaction of XeF_{6} with oxygen
(C) Hydrolysis of XeF_{6} in acidic medium
(D) Hydrolysis of XeF_{6} in basic medium
21. Assuming H_{2} and $H D$ molecules having equal lengths, the ratio of the rotational partition functions of these molecules, at temperature above 100 K is
(A) $\frac{3}{8}$
(B) $\frac{3}{4}$
(C) $\frac{1}{2}$
(D) $\frac{2}{3}$
22. The rate of exchange of cyanide ligands in the complexes (i) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$, (ii) $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$ and (iii) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$ by ${ }^{14} \mathrm{CN}$ follow the order
(A) (ii) $>$ (i) $>$ (iii)
(B) (iii) $>$ (i) $>$ (ii)
(C) (i) $>$ (iii) $>$ (ii)
(D) (i) $>$ (ii) $>$ (iii)
23. Among the following isostructural compounds, identify the compound which has the highest lattice energy
(A) LiF
(B) LiCl
(C) NaCl
(D) MgO
24. The ground state of V^{3+} ion is
(A) ${ }^{3} \mathrm{~F}_{2}$
(B) ${ }^{5} \mathrm{D}_{0}$
(C) ${ }^{3} F_{4}$
(D) ${ }^{2} D_{5 / 2}$
25. Using chlorobenzene as solvent, the reagents needed for an efficient synthesis of borazine are
(A) $\mathrm{NH}_{4} \mathrm{Cl}$ and BCl_{3}
(B) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{BCl}_{3}$ and NaBH_{4}
(C) $\mathrm{NH}_{4} \mathrm{Cl}$ and NaBH_{4}
(D) NH_{3} and BCl_{3}
26. The basic reaction involved in the synthesis of silicones is
(A) The hydrolysis of trimethyl chlorosilane
(B) The hydrolysis of dimethyl dichlorosilane
(C) The hydrolysis of ethyl chlorosilane
(D) The acid hydrolysis of dimethyl silane
27. The major product obtained upon treatment of compound X with $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $80^{\circ} \mathrm{C}$ is

(X)
(A)

(B)

(C)

(D)

28. In the reaction

if the concentration of both the reactions is doubled, then the rate of the reaction will
(A) Remain unchanged
(B) Quadruple
(C) Reduce to one fourth
(D) Double
29. Among the halobenzenes, the one that undergoes electrophilic aromatic substitution most readily and the reason for its higher reactivity are
(A) Fluorobenzene; the benzenonium ion intermediate is established by $2 \mathrm{p}(\mathrm{F}), 2 \mathrm{p}$ (C) overlap which is most efficient
(B) Chlorobenzene; very high electron affinity of chlorine considerably lowers the energy of activation of the reaction
(C) Bromobenzene; high polarizing power of the halogen atom helps in effective stabilization of the benzenonium ion intermediate
(D) lodobenzene; iodine atom has the lowest electronegativity and hence electron density of the phenyl ring is least disturbed
30.

The above reaction is an example of
(A) Nucleophilic substitution of addition-elimination mechanism
(B) Electrophilic substitution by addition-elimination mechanism
(C) Radical substitution reaction
(D) Nucleophilic substitution involving benzyne intermediate
31. For the reaction: $\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{BF}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrF}_{3}(\mathrm{~g})$, the equilibrium constant at 2000 K and 1.0 bar is 5.25 . When the pressure is increased by 8 -fold, the equilibrium constant
(A) Increases by a factor of 1.86
(B) Decreases by a factor of 1.86
(C) Remains same
(D) Increases by a factor of 8

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
32. The vapour pressure of pure components ' A ' and ' B ' are 200 torr and 100 torr respectively. Assuming a solution of these components obeys Raoult's law, the mole fraction of component ' A ' in vapour phase in equilibrium with a solution containing equimoles of ' A ' and ' B ' is \qquad .
33. For the reaction,
$2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})$
the thermodynamic properties
(A) $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are positive
(B) $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are negative
(C) $\Delta \mathrm{G}$ and $\Delta \mathrm{H}$ are negative and $\Delta \mathrm{S}$ is positive
(D) $\Delta \mathrm{G}$ is negative and $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are positive
34. The standard free energies of formation of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and $\mathrm{CdS}(\mathrm{s})$ at $1000{ }^{\circ} \mathrm{C}$ are $-49.0 \mathrm{~kJ} / \mathrm{mol}$ and $-127.2 \mathrm{~kJ} / \mathrm{mol}$, respectively. Use these data to predict whether $\mathrm{H}_{2}(\mathrm{~g})$ will reduce CdS (s) to metallic Cd at this temperature
(A) $\Delta \mathrm{G}=-78.2 \mathrm{~kJ} / \mathrm{mol}$ and H_{2} reduces CdS
(B) $\Delta G=-39.1 \mathrm{~kJ} / \mathrm{mol}$ and H_{2} reduce CdS
(C) $\Delta \mathrm{G}=0 \mathrm{~kJ} / \mathrm{mol}$ and the reaction is at equilibrium
(D) $\Delta \mathrm{G}=+78.2 \mathrm{~kJ} / \mathrm{mol}$ and the reaction is not feasible
35. The ionic strength of $0.01 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ is \qquad .
36. A student recorded a polarogram of $2.0 \mathrm{mM} \mathrm{Cd}{ }^{2+}$ solution and forgot to add KCl solution. What type of error do you expect in his results?
(A) Only migration current will be observed
(B) Only diffusion current will be observed
(C) Both migration current as well as diffusion current will be observed
(D) Both catalytic current as well as diffusion current will be observed
37. The half-life time for a reaction at initial concentrations of 0.1 and $0.4 \mathrm{~mol}^{-1}$ are 200 s and 50 s respectively. The order of the reaction is \qquad .
38. The Nernst heat theorem is:
(A) $\lim _{T=0} \frac{d(\Delta F)}{d T}=0$
(B) $\lim _{T=0} \Delta S=0$
(C) $\lim _{T=0} \Delta C_{p}=0$
(D) $\lim _{T=0} \frac{d(\Delta H)}{d T}=0$
39. Fast breeder reactors use
(A) No moderator
(B) Graphite as moderator
(C) Heavy water as moderator
(D) Uranium as fuel
40. A nucleus with a high N/P ratio undergoes spontaneous
(A) k-electron capture
(B) Positron emission
(C) Proton emission
(D) β emission
41. Which of the following statements about the reactivity of 1-chloroapocamphane (1) towards alcoholic AgNO_{3} is true?

(1)

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(A) Reacts by SN1 mechanism
(B) Reacts by SN2 mechanism
(C) Reacts by SN3 mechanism
(D) Does not react
42. Neptunium series is different from other radio-active series in that
(A) All the isotopes in the series have mass numbers divisible by 4 without any remainder
(B) All the isotopes in the series have mass numbers divisible by 4 with a remainder of 2
(C) The end product in an isotope of bismuth
(D) The end product is an isotope of lead
43. $\quad o$-Chlorotoluene reacts with sodamide in liquid ammonia to give o-toluidine and m-toluidine.

This reaction proceeds through an intermediate
(A)

(B)

(C)

(D)

44. The decreasing order of reactivity of meta-nitrobromobenzene (I); 2, 4, 6trinitrobromobenzene (II); para-nitrobromobenzene (III) and 2, 4-dinitrobromobenzene (IV) towards OH^{-}ions is
(A) I $>$ II $>$ III $>$ IV
(B) II $>$ IV $>$ III $>$ I
(C) IV $>$ II $>$ III $>$ I
(D) II $>$ IV $>$ I $>$ III
45. Which of the following represents a set of hard acid and soft base respectively?
(A) Fe^{3+} and F
(B) Fe^{3+} and S^{2-}
(C) Ag^{+}and S^{2-}
(D) Ag^{+}and F^{-}
46. If the value of K_{0} for the reaction $\mathrm{A}_{(\mathrm{g})} \mathrm{B}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{g})}$ is $6 \times 10^{-4} \mathrm{~mol} \mathrm{~m}^{-3}$ at 530 K , then the value of $\mathrm{K}_{\mathrm{p}}\left(\right.$ in Nm^{-2}) is
(A) 2.64
(B) 0.64
(C) 2.60×10^{-4}
(D) 1.38×10^{-5}
47. A radioactive isotope having a half-life of 3 days we received after 12 days. It was found that there were only 2 g of the isotope in the container. The initial weight of the isotope was
(A) 12 g
(B) 24 g
(C) 32 g
(D) 48 g

COMMON DATA QUESTIONS 48 \& 49

Write the structures of X, Y and Z in the following.
48.
 x

(A)

Red-orange coloured dye

(B) Red-orange coloured dye

(C)

Red-orange coloured dye
(D)

49.

(A) N-Nitrosoamine (oily layer)

(B) N-Nitrosoamine (oily layer)

(C) N-Nitrosoamine (oily layer)

(D) N-Nitrosoamine (oily layer)

LINKED ANSWER QUESTIONS 50 \& 51

Given the following reaction

50. What is the product x in the reaction?
(A)

$\mathrm{CH} \mathrm{COOH}_{2} \mathrm{COOH}$
$\mathrm{CH}_{2} \mathrm{COOH}$
(B)
(C)

(D)

51. What is the product y in the reaction?
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{CH}_{5}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$

LINKED ANSWER QUESTIONS 52-53
Given the following Reaction

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

52. What is the product P and Q in the reaction?
(A)

(B) $\quad \mathrm{Q}=$

(C) $\quad Q=$

(D) $\quad Q=$

53. What is the product R and S in the reaction?
(A)

(B) $S=$

(C)

(D)

LINKED ANSWER QUESTIONS 54-55

Given the following Reaction

54. What is the product B in the reaction?
(A)

(B)

(C)

(D)

55. What is the product C in the reaction?
(A) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{Ph}$
(B) $\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{Ph}$
(C) $\mathrm{C}_{6} \mathrm{H}_{13}-\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{Ph}$
(D) $\mathrm{C}_{6} \mathrm{H}_{13}-\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Ph}$
56. A lent Rs. 600 to B for 2 years and rs. 150 to C for 4 years and received altogether from both Rs. 90 as interest. Find the rate of interest, simple interest being calculated.
(A) 5%
(B) 16%
(C) 6%
(D) 4.5%
57. A and B together can complete a piece of work in 35 days while A alone can complete the same work in 60 days. In how many days, B alone will be able to complete the same work?
(A) 84 days
(B) 83 days
(C) 85 days
(D) 90 days
58. Synonym of Phlegmatic
(A) practical
(B) salivary
(C) dishonest
(D) calm
59. Synonym of Ponderous
(A) contemplative
(B) moist
(C) erect
(D) bulky
60. Atom: Microscope
(A) tape : microphone
(B) planet : telescope
(C) person : microcosm
(D) receiver : telephone
61. Chronic : Acute
(A) symphony : ditty
(B) constant : sudden
(C) ailing : mortal
(D) timely : belated
62. Synonym of Vernacular
(A) Ingrained
(B) incorrigible
(C) perfect
(D) pious
63. Synonym of Pastime
(A) employment
(B) amusement
(C) hobby
(D) enjoy
64. 210, 195, 175, 150, 120
(A) 90
(B) 75
(C) 80
(D) 85
65. 2, 5, 26, 677
(A) 17803
(B) 13576
(C) 458329
(D) 458330

ANSWER KEY

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Answer	15	B	A	D	A	D	2	A	A	1,0	B	A	A	99.75\%	A	A	B	C	C	
Question	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Answer	B	D	D	A	B	B	C	D	A	D	C	B	B	D	0.03	C	2	D	A	D
Question	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Answer	D	C	B	B	B	A	C	A	B	A	B	B	A	B	A	A	A	D	D	B
Question	61	62	63	64	65															
Answer	B	A	A	D	D															

HINTS AND SOLUTIONS

1. 15

For bimolecular reaction
$\Delta \mathrm{H}=\mathrm{E}_{\mathrm{a}}-2 \mathrm{RT}=20.0-\left(\frac{2 \times 8.314 \times 300}{100}\right)=20.0-4.98=15.02 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. (B)

(I) R, R
(II) R, S

Both are diastereomers.

O-Sugars

Both are mirror images to each other. So (II) \& (III) are enantiomers.

3.(A)

4.(D) $\quad 0.40 \mathrm{~V}$
$\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe} \quad-0.04 \mathrm{~V}$
$\frac{-\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}-\underset{+}{-0.44 V}}{\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{+0}^{+0.4 V}}$
5.(A) The most unstable species is $\mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$ because it will polymerize alkenes.
6.(D) (1) Photosynthesis:
$6 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Light }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{O}_{2}$ (Carbohydrate)
Photosynthesis in plants proceeds with an increase in the energy.

Quantum Yield =
Phosphorescence:
$\underset{\text { (Triplet state) }}{\mathrm{T}_{1}} \longrightarrow \underset{\text { (Ground state) }}{\mathrm{S}_{0}}$

All statements 1, 2 and 3 are correct.
7. 2

8.(A)

9.(A)

10. 1, 0
$\mathrm{V}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$ - unpaired $\mathrm{e}^{-}=1$
$\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$ - unpaired $\mathrm{e}^{-}=0$
11.(B) In electrophilic aromatic substitution reaction, the electrophile attacks the substrate in the first step to give a carbocation (known as arenium ion or σ complex) the leaving group departs in second step. So it is a bimolecular and involves arenium ion (σ complex) intermediate.

12.(A) (P) Supporting electrolyte
(2) Residual current
(Q) $\mathrm{Zn}(\mathrm{Hg})_{\mathrm{a}=1}\left|\mathrm{ZnCl}_{2}(\mathrm{aq})\right| \mathrm{Zn}(\mathrm{Hg})_{\mathrm{Q}=2}$
(4) Electrode concentration cell
(R) Inversion temperature
(6) Thomson expansion
(S) Entropy of vaporization
(5) Trouton's rule
13.(A) $\mathrm{Hg}_{2} \mathrm{Cl}_{2}+2 \mathrm{e}^{-} 2 \mathrm{Hg}(\mathrm{I})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
$\mathrm{H}_{2} 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
$\Delta \mathrm{G}=-\mathrm{nFE}=2 \times 96500 \times 0.2684=-51.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta \mathrm{S}=-\mathrm{nF}\left(\frac{\partial \mathrm{E}}{\partial \mathrm{T}}\right)_{\mathrm{T}}=2 \times 96500 \times 3 \times 10^{-4}=-57.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\Delta H=-n F\left[E-T\left(\frac{\partial E}{\partial T}\right)_{P}\right]=-2 \times 96500\left[0.2684-298 \times 3 \times 10^{-4}\right]=-2 \times 96500 \times 0.179=-$
$34.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
14. 99.75%

Given $\quad D=999, V_{o}=20 \mathrm{ml}, \quad \mathrm{V}_{\mathrm{m}}=50 \mathrm{ml}$
$E=x$ is percentage of extraction
$D=\frac{\left(\frac{V_{m}}{V_{0}}\right) E}{100-E}=999$
$999=\frac{\left(\frac{50}{20}\right) x}{100-x}=\frac{2.5 x}{100-x}$
$x=99.75 \%$
15.(A) Observation (1), Mean $=49.10 \%$

Relative Mean error $=\frac{(49.10-49.06)}{49.06}=0.08 \%$
Observation (2), \quad Mean $=49.42 \%$
Relative Mean error $=\frac{(49.42-49.06)}{49.06}=0.73 \%$
16.(A) 4.55
$Z_{\text {effective }}=Z-S$
S = Screening constant
${ }_{8} \mathrm{O}=\mathrm{Is}_{(\mathrm{n}-1)}^{2} \underbrace{2 \mathrm{~s}^{2} 2 p^{4}}_{\mathrm{n}}$
$S=0.85 \times 2+0.35 \times 5=1.70+1.75=3.45$
$Z^{*}=8-3.45=4.55$
17.(B) The formula of the pyrosilicate ion is $\mathrm{Si}_{2} \mathrm{O}_{7}{ }^{6-}$.
18.(C) $\mathrm{SF}_{4}-\mathrm{sp}^{3} \mathrm{~d}$

(Trigonal bipyramidal)
19.(C) Atom X has three valence electrons and hence it has a valency of 3 while atom Y has six valence electrons, it has a valency of 2 . Thus the formula of the compound is $X_{2} Y_{3}$.
20.(D) $2 \mathrm{XeF}_{6}+16 \mathrm{OH}^{-} \longrightarrow \mathrm{XeO}_{6}{ }^{4-}+\mathrm{Xe}+8 \mathrm{H}_{2} \mathrm{O}+12 \mathrm{~F}^{-}+\mathrm{O}_{2}$

The percent ion $\mathrm{XeO}_{6}{ }^{4-}$ can be prepared by hydrolysis of XeF_{6} in basic medium.

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
21.(B) Rotational partition function $\mathrm{Fr}=\frac{8 \pi^{2} \mathrm{IkT}}{2 h^{2}}$
$\mathrm{Fr} \propto \mathrm{I}\left(\mu \mathrm{r}^{2}\right)$ given length $=$ const.

$$
\mathrm{T}=\text { const. }
$$

$\mathrm{Fr} \propto \mu$

$$
\left[\begin{array}{l}
\mu_{\mathrm{H}_{2}}=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=\frac{1 \times 1}{1+1}=\frac{1}{2} \\
\mu_{\text {HD }}=\frac{1 \times 2}{1+2}=\frac{2}{3}
\end{array}\right.
$$

$$
\begin{aligned}
& \frac{\mathrm{Fr}_{\mathrm{H}_{2}}}{\mathrm{Fr}_{\mathrm{HD}}}=\frac{\mu_{\mathrm{H}_{2}}}{\mu_{\mathrm{HD}}} \\
& \frac{\mathrm{Fr}_{\mathrm{H}_{2}}}{\mathrm{Fr}_{\mathrm{HD}}}=\frac{1}{2} \times \frac{3}{2}=\frac{3}{4}
\end{aligned}
$$

22.(D) The order of lability:
$\mathrm{Ni}^{+2}>\mathrm{Mn}^{+3}>\mathrm{Cr}^{+3}$
$d^{8} \quad d^{4} \quad d^{3}$
So the order of rate of exchange of cyanide ligand $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}>\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$.
23.(D) Lattice energy depends on the product of the ionic charge

$$
\mu \propto\left(z^{+} z^{-}\right)
$$

$\left(z^{+} z^{-}\right)$
$\left(z^{+} z^{-}\right)$
LiF 1

MgO 4

LiCl
NaCl
1
So MgO has the highest lattice energy.
24.(A) $\quad V^{3+}=3 d^{2}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$\mathrm{L}=2+1=3(\mathrm{~F})$
$S=\frac{\mathrm{n}}{2}=\frac{2}{2}=1$
Multiplicity $=(2 S+1)=(2 \times 1+1)=3$
A/C to Hund's Rule Smallest J is the most stable if the subshell is less than half filled.
J (smallest value) $=\mathrm{L}-\mathrm{S}=3-1=2$
So the ground state term symbol
$2 S+{ }^{1} L_{J}={ }^{3} F_{2}$
25.(B)

26.(B)

The starting material for the manufacture of silicones are dimethyl dichlorosilane.
27.(C)

$\xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}}$

\longrightarrow

28.(D)

Rate of reaction \propto [Reaction intermediate] so if the concentration of the reactant is doubled the rate of reaction will double.
29.(A) The order of reactivity of various halobenzenes is $\mathrm{PhF}>\mathrm{PhCl} \approx \mathrm{PhBr}>\mathrm{PhI}$.

In fluorobenzene F and C have 2 p orbitals which are of comparable size thus there is better overlap resulting in greater + R effect than that of Cl, Br or I.
30.(D)

This reaction is an example of nucleophilic substitution involving benzyne intermediate.
31.(C) The equilibrium constant does not depend on the pressure so the equilibrium constant remain same.

$$
\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{BF}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrF}_{3}(\mathrm{~g})
$$

$\begin{array}{llll}\text { Initial mole } & 1 & 1 & 0\end{array}$
at equilibrium $\quad(1-x) \quad(1-x) \quad 2 x$
Total no. of moles at equilibrium $=(1-x)+(1-x)+2 x=2$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
$\mathrm{P}_{\mathrm{Br}_{2}}=\frac{(1-\mathrm{x})}{2} \times \mathrm{P} ; \mathrm{P}_{\mathrm{Br}_{3}}=\frac{2 \mathrm{x}}{2} \times \mathrm{P} \quad ; \mathrm{P}_{\mathrm{BF}_{2}}=\left(\frac{1-\mathrm{x}}{2}\right) \mathrm{P}$
$\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{Br}_{3}}^{2}}{\left(\mathrm{P}_{\mathrm{Br}_{2}}\right)\left(\mathrm{P}_{\mathrm{BF}_{2}}\right)}=\frac{4 \mathrm{x}^{2} \mathrm{P}^{2}}{(1-\mathrm{x})(1-\mathrm{x}) \mathrm{P}^{2}}=\frac{4 \mathrm{x}^{2}}{(1-\mathrm{x})(1-\mathrm{x})}$
32.(B) 0.66

At equilibrium
$x_{A}=0.5 ; x_{B}=0.5$
A/C to Raoult's law
$P=P_{A}+P_{B}=x_{A} P_{A}{ }^{\circ}+x_{B} P_{B}{ }^{\circ}$
$P_{A}=0.5 \times 200=100$ Torr
$P_{B}=0.5 \times 100=50$ Torr
$P=100+50=150$ Torr
x_{A} vapour $=\frac{P_{A}}{P}=\frac{100}{150}=\frac{2}{3}=0.66$
33.(B) $\quad 2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})$
$\Delta \mathrm{n}=1-2=-1$
$\Delta \mathrm{S}=-\mathrm{ve}, \quad \Delta \mathrm{H}=-\mathrm{ve}, \quad \Delta \mathrm{G}=-\mathrm{ve}$
34.(D) $\mathrm{CdS}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{Cd}(\mathrm{s})$
$\Delta \mathrm{G}=\Sigma \mathrm{G}_{\text {Products }}-\Sigma \mathrm{G}_{\text {reactant }}=\left[\Delta \mathrm{G}_{\mathrm{it} \mathrm{H}_{2}(\mathrm{~s})}^{\circ}+\Delta \mathrm{G}_{\mathrm{iCd}(\mathrm{s})}^{\circ}-\left(\Delta \mathrm{G}_{\mathrm{iCdS}(\mathrm{s})}^{\circ}+\Delta \mathrm{G}_{\mathrm{iH}(\mathrm{H}(\mathrm{g})}^{\circ}\right)\right]=[-49+0-(-127.2+0)]$
$=78.2 \mathrm{~kJ} / \mathrm{mol}$
The reaction is not feasible.
35. 0.03
$I=\frac{1}{2}\left(m_{+} z_{+}^{2}+m_{-} z_{-}^{2}\right)$
Given $\quad \mathrm{K}_{2} \mathrm{SO}_{4}$
$\mathrm{m}_{+}=2 \times 0.01 \mathrm{M}$
$\mathrm{m}_{-}=0.01 \mathrm{M}$
$z_{+}=+1$
$z_{-}=-2$
$I=\frac{1}{2}\left[2 \times 0.01 \times(1)^{2}+0.01 \times(2)^{2}\right]=\frac{1}{2}(0.02+0.04)=\frac{1}{2}(0.06)=0.03$
36.(C) The migration current can be practically eliminated if an indifferent electrolyte is added to the solution in a concentration so large that its ions carry essentially all the current if we forgot to add KCl solution then both migration current as well as diffusion current will be observed.
37. 2

$$
\begin{array}{r}
\frac{\left(t_{1 / 2}\right)_{1}}{\left(t_{1 / 2}\right)_{2}}=\left(\frac{a_{2}}{a_{1}}\right)^{n-1} \\
\ln \frac{\left(t_{1 / 2}\right)_{1}}{\left(t_{1 / 2}\right)_{2}}=n-1 \ln \left(\frac{a_{2}}{a_{1}}\right) \\
n=1+\frac{\ln \left(t_{1 / 2}\right)_{1} / \ln \left(t_{1 / 2}\right)_{2}}{\ln \frac{a_{2}}{a_{1}}}=1+\frac{\frac{\ln 200}{\ln 50}}{\ln \frac{0.4}{0.1}}+1+\frac{\ln 4}{\ln 4}=1+1=2
\end{array}
$$

38.(D) A / C to the Nernst heat theorem

$$
\underset{T \rightarrow 0}{\mathrm{~L}_{\rightarrow 0}^{+}}\left[\frac{\partial(\Delta \mathrm{H})}{\partial \mathrm{T}}\right]_{p}=0
$$

39.(A) Fast breeder reactors require the use of fast neutrons; no moderator is needed.
40.(D) $\quad{ }_{5}^{11} \mathrm{~B} \xrightarrow[\beta \text { emission }]{ }{ }_{6}^{11} \mathrm{C}$

$$
\begin{aligned}
& \frac{\mathrm{n}}{\mathrm{p}}=\frac{6}{5} \quad \frac{\mathrm{n}}{\mathrm{p}}=\frac{5}{6} \\
& \frac{\mathrm{n}}{\mathrm{p}} \text { Ratio high } \frac{\mathrm{n}}{\mathrm{p}} \text { Ratio low }
\end{aligned}
$$

41.(D) Substitutions reactions do not take place at bridgehead carbons due to rigid cage like structure of substrate. So 1-chloroapocamphane does not react with Alcoholic AgNO_{3}.
42.(C) The last member of the Neptunium series is an isotope of bismuth $\left({ }_{83}^{209} \mathrm{Bi}\right)$ and not an isotope of Lead.
43.(B)

44.(B) The reactivity of substrate for ArSN^{2} reaction $\alpha-\mathrm{R}$ and -I power of the group present at $0-$ and p-position. So the order is

(IV)

(III)

(I)
45.(B) \quad Hard acid $=\mathrm{Fe}^{3+}$

Soft base $=S^{2-}$
Hard Acid: A hard acid like a hard base is difficult to polarize. A cationic hard acid generally has a small size and high positive charge.

Soft Base: Soft lewis base are those in which the donar atoms are easily polarised and have low electronegativity.
46.(A) $\mathrm{K}_{\mathrm{c}}=6 \times 10^{-4} \mathrm{~mol} \mathrm{~m}^{-3}, \mathrm{~T}=530 \mathrm{~K}, \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta^{\mathrm{n}}}
$$

$\mathrm{A}_{(\mathrm{g})} \mathrm{B}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{g})}$
$\Delta \mathrm{n}=2-1=1$
$K_{p}=6 \times 10^{-4} \times 8.314 \times 530=2.64$
47.(C) Half life time $t_{1 / 2}=3$ days

Time for decay $\mathrm{T}=12$ day
$\mathrm{T}=\mathrm{n} \times \mathrm{t}_{1 / 2}$
$12=\mathrm{n} \times 3$
$\mathrm{n}=4$
Let the original amount be $=\mathrm{N}_{0}$
Let the amount left after 4 half life periods $=\mathrm{N}$
Fraction $=\mathrm{N} / \mathrm{N}_{0}$
$N=\left(\frac{1}{2}\right)^{n} N_{0}$
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}$
$\frac{2}{N_{0}}=\left(\frac{1}{2}\right)^{4}$
$\mathrm{N}_{0}=32 \mathrm{gm}$
${ }^{24} \mathrm{Na}$ is used to detect the presence of blood clots.

48.(A) $X=$ Red-orange coloured dye

49.(B) $\mathrm{Y}=\mathrm{N}$-Nitrosoamine (oily layer)
50.(A)

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}
$$

51.(B)
 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
52.(B) $\mathrm{P}=\mathrm{CH}_{3} \mathrm{COCl}$ or $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$

53.(A) $\mathrm{S}=\mathrm{SO}_{2} \mathrm{NH}_{2}$,
$\mathrm{T}=$

(B)

$\mathrm{NH}_{2} \mathrm{NH}_{2} / \mathrm{KOH}$, (Wolff Kishner Reduction)
54.(B)

$$
\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{Ph}
$$

56.(A)

Rs. 600 for 2 years = Rs. 1200 for 1 year

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
and Rs. 150 for 4 years = Rs. 600 for 1 year
$\therefore \quad$ Total principal $=$ Rs. 1800 for 1 year
Interest = Rs. 90
$\therefore \quad$ Rate of interest $=\frac{90 \times 100}{1800 \times 1}=5 \%$
57.(A) A and B did the work for 35 days to complete it. A can complete the work in 60 days.

So,

$$
\frac{A \text { did }}{A \text { can }}+\frac{B \text { did }}{B \text { can }}=1
$$

$$
\therefore \quad \frac{35}{60}+\frac{35}{x}=1
$$

or $\quad x=84$ days.
58.(D) Synonym of Phlegmatic is calm
59.(D) Synonym of Ponderous is bulky
60.(B) One needs a microscope to see an atom. One needs a telescope to see a planet.
61.(B) Chronic continues over a long period of time. Constant continues over a long period of time, sudden is short-lived.
62.(A) The synonym Vernacular means "Being or characteristic of or appropriate to everyday language" is ingrained.
63.(A) Synonym of pastime is employment. Meaning of Pastime is a diversion that occupies one's time and thoughts.
64.(D) Pattern is $210-195=15$
$195-175=20$
$175-150=25$
$150-120=30$
so the missing number is $120-35=85$
65.(D) Pattern is $(2)^{2}+1=5$

$$
(5)^{2}+1=26
$$

$$
(26)^{2}+1=671
$$

So the missing number is $(671)^{2}+1=458330$

