CSIR UGC NET
 PHYSICAL SCIENCE
 SOLVED SAMPLE PAPER

* DETAILED SOLUTIONS

CSIR NET - PHYSICAL SCIENCE

 MOCK TEST PAPER- This paper contains 55 Multiple Choice Questions
- part A 15, part B 20 and part C 20
- Each question in Part 'A' carries two marks
- Part 'B' carries 3.5 marks
- Part 'C' carries 5 marks respectively.
- There will be negative marking @ 25\% for each wrong answer.
- Pattern of questions : MCQs
- Total marks :200
- Duration of test : 3 Hours

VPM CLASSES

For IIT-JAM, JNU, GATE, NET, NIMCET and Other Entrance Exams
Pot No.-8, Muhana Mandi Road, Jaipur-302020, Mob.:- 9001297111, www.vpmdasses.com
Web Site www.vpmclasses.com E-mail-vpmclasses@yahoo.com

Website: www.vpmclasses.com

Mobile: 9001297111, 9829567114

E-Mail: info@vpmclasses.com

PART-A (Q.1-15)

1. Identify the next figure in the sequence

2. A daily sheet calendar of the year 2013 contains sheets of $10 \times 10 \mathrm{~cm}$ size. All the sheets of the calendar are spread over the floor of a room of $5 \mathrm{~m} \times 7.3 \mathrm{~m}$ size. What percentage of the floor will be covered by these sheets?
(1) 0.1
(2) 1
(3) 10
(4) 100

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
3. A car is moving along a straight track. Its speed is changing with time as shown.

Which of the following statements is correct?
(1) The speed is never zero.
(2) The acceleration is zero once on the path.
(3) The distance covered initially increases and then decreases.
(4) The car comes back to its initial position once.
4. There are 2 hills, A and B, in a region. If hill A is located $N 30^{\circ} E$ of hill B, what will be the direction of hill B when observed from hill A ? ($N 30^{\circ}=$ means 30° from north towards east).
(1) $\mathrm{S} 30^{\circ} \mathrm{W}$
(2) $\mathrm{S} 60^{\circ} \mathrm{W}$
(3) $\mathrm{S} 30^{\circ} \mathrm{E}$
(4) $\mathrm{S} 60^{\circ} \mathrm{E}$
5. Average yield of a product in different years is shown in the histogram. If the vertical bars indicate variability during the year, then during which year was the percent variability over the average of that year the least?

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

(1) 2000
(2) 2001
(3) 2002
(4) 2003
6. 20% of students of a particular course get jobs within one year of passing. 20% of the remaining students get jobs by the end of second year of passing. If 16 students are still jobless, how many students had passed the course?
(1) 32
(2) 64
(3) 25
(4) 100
7. A sphere of iron of radius $R / 2$ fixed to one end of a string was lowered into water in a cylindrical container of base radius R to keep exactly half the sphere dipped. The rise in the level of water in the container will be

(1) $R / 3$
(2) $R / 4$
(3) R/8
(4) $R / 12$
8. Three identical flat equilateral-triangular plates of side 5 cm each are placed together such that they form a trapezium. The length of the longer of the two parallel sides of this trapezium is
(1) $5 \sqrt{\frac{3}{4}} \mathrm{~cm}$
(2) $5 \sqrt{2} \mathrm{~cm}$
(3) 10 cm
(4) $10 \sqrt{3} \mathrm{~cm}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
9. Consider a right-angled triangle $A B C$ where $A B=A C=3$. A rectangle $A P O Q$ is drawn inside it, as shown, such that the height of the rectangle is twice its width. The rectangle is moved horizontally by a distance 0.2 as shown schematically in the diagram (not to scale).

What is the value of the ratio $\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{OST}}$?
(1) 625
(2) 400
(3) 225
(4) 125
10. A code consists of at most two identical letters followed by at most four identical digits. The code must have at least one letter and one digit. How many distinct codes can be generated using letters A to Z and digits 1 to 9 ?
(1) 936
(2) 1148
(3) 1872
(4) 2574

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
11. Find the missing letter :

A	$?$	Q	E
C	M	S	C
E	K	U	A
G	I	W	Y

(1) L
(2) Q
(3) N
(4) O
12. If $3 \leq X \leq 5$ and $8 \leq Y \leq 11$ then which of the following options is TRUE?
(1) $\frac{3}{5} \leq \frac{X}{Y} \leq \frac{8}{5}$
(2)
$\frac{3}{11} \leq \frac{X}{Y} \leq \frac{5}{8}$
(3) $\frac{3}{11} \leq \frac{X}{Y} \leq \frac{8}{5}$
(4)

13. If $y=5 x^{2}+3$, then the tangent at $x=0, y=3$.
(1) passes through $x=0, y=0$
(2) has a slope of +1
(3) is parallel to the x-axis
(4) has a slope of -1

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
14. A student buys a book from an online shop at 20% discount. His friend buys another copy of the same book in a book fair for Rs. 192 paying 20% less than his friend. What is the full price of the book?
(1) Rs. 275
(2) Rs. 300
(3) Rs. 320
(4) Rs. 392
15. A square pyramid is to be made using a wire such that only one strand of wire is used for each edge. What is the minimum number of times that the wire has to be cut in order to make the pyramid?
(1) 3
(2) 7
(3) 2
(4) 1

PART-B (Q. 16 TO 35)

16. The value of the integral

$$
\int_{c} \frac{e^{z} \sin (z)}{z^{2}} d z
$$, where the counter C is the unit circle $|z-2|=1$, is

(1) $2 \pi i$
(2) $4 \pi i$
(3) πi
(4) 0

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
17. If $f(x)=\left\{\begin{array}{lr}0 & \text { for } x<3 \\ x-3 & \text { for } x \geq 3\end{array}\right.$
then the Laplace transform of $f(x)$ is
(1) $S^{-2} e^{S x}$
(2) $S^{2} e^{S x}$
(3) S^{-2}
(4) $S^{-2} e^{-S x}$
18. The solution of the differential equation for $y(t)$

$$
\frac{d^{2} y}{d t^{2}}-y=2 \cosh (t)
$$, subject to the $\left.\frac{d y}{d t}\right|_{t=0}=0$, is

(1)
$\frac{1}{2} \cosh (t)+t \sinh (t)$
(2) $t \cosh (t)$
(3) $-\sin h t+t \cos h t$
(4) $t \sinh t$
19. The acceleration due to gravity (g) on the surface of earth is approximately 2.3 times that on the surface of mars. Given that the radius of mass is about three - fourth the radius of earth the ratio of the escape velocity on earth on that mass approximately
(1) 1.1
(2) 1.3
(3) 2.3
(4) 2.6

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
20. Consider the decay process $\tau^{-} \rightarrow \pi^{-}+\mathrm{v}^{\prime}$ in the rest frame of the τ^{-}. The masses of the $\tau^{-},-\pi$ and V_{τ} are M_{τ}, M_{π} and zero respectively. The energy of ${ }^{-} \pi$ is.
(1)

$$
\frac{\left(\mathrm{M}_{\tau}^{2}-\mathrm{M}_{\pi}^{2}\right)}{2 \mathrm{M}_{\tau}} \mathrm{c}^{2}
$$

(2) $\frac{\left(\mathrm{M}_{\tau}^{2}+\mathrm{M}_{\pi}^{2}\right)}{2 \mathrm{M}_{\tau}} \mathrm{c}^{2}$
(3) $\left(M_{\tau}-M_{\pi}\right) c^{2}$
(4) $\sqrt{M_{\tau} M_{\pi} c^{2}}$
21. The Hamiltonian of a particle of unit mass moving in the xy plane is given to be
$H=x P_{x}-y P_{x}-\frac{1}{2} x^{2}+\frac{1}{2} y$ in suitable units, The initial values are given to be $(x(0), y(0))$
$=(1,1)$ and $\left(P_{x}(0), P_{y}(0)\right)=\left(\frac{1}{2},-\frac{1}{2}\right)$ During the motion, the curved traced out by the particles in the $x y$ - plane and the $P_{x} P_{y}$ - plane are
(1) Both straight lines
(2) A straight line and a hyperbola respectively.
(3) A hyperbola and an ellipse, respectively
(4) Both hyperbolas.
22. A square loop of Area A lie in $x-y$ plane. An electromagnetic wave is $E=E_{O} \cos (k \cdot r-\omega t)$ propagating in space. The power crossing through the square is-
(1)

$2 \mu_{0} C \vec{A} \cdot \vec{K}$

$$
\mathrm{E}_{0}{ }^{2} \vec{A} \cdot \vec{K}
$$

(2)
$\mu_{0} \mathrm{C}$

$$
2 \mathrm{E}_{0}^{2} \overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{~K}}
$$

(3) $\mu_{0} \mathrm{C}$
(4)

23. The electric field $E(r, t)$ at a point r at time t in a metal due to the passage of electrons can be described by the equation

$$
\nabla^{2} E(r, t)=\frac{1}{c^{2}}\left[\frac{\partial^{2} E(r, t)}{\partial t^{2}}+\omega^{\prime 2} E(r, t)\right]
$$

Where ${ }^{\prime}$ ' is a characteristic associated with the metal and c is the speed of light in vacuum The dispersion relation corresponding to the plane wave solution of the form Exp $[i(i . r-\omega t)]$ is given by
(1) $\omega^{2}=c^{2} k^{2}-\omega^{\prime 2}$
(2) $\omega^{2}=c^{2} k^{2}+\omega^{\prime 2}$
(3) $\omega=\mathrm{ck}+\omega^{\prime}$
(4) $\omega=\mathrm{ck}-\omega^{\prime}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
24. Consider an electric dipole of mass m and magnitude of charge is q, equivalent to an accelerated charge radiating power. The dipole moment amplitude p_{0} in term of charge (q) and acceleration a of accelerated charge is
(1) $\frac{q \omega^{2}}{\vec{a}}$
(2) $\frac{q \vec{a}}{\omega^{2}}$
(3) $\frac{q^{2}}{\omega^{3}} \vec{a}$
(4) None of these
25. The normalized wave functions Ψ_{1} and Ψ_{2} correspond to the ground state and the first excited state of a particle in a potential. An operator \hat{A} acts on the wave function as $\hat{A} \psi_{1}=\psi_{2}$ and $\hat{A} \psi_{2}=\psi_{1}$. The expectation value of A for the .

$$
\psi=\frac{1}{5}\left(3 \psi_{1}+4 \psi_{1}\right)
$$

(1) -0.32
(2) 0
(3) 0.75
(4) 0.96
26. A particle is described by the wave function

$$
\psi(x)=\frac{1+i x}{1+i x^{2}}
$$ found at

(1) $\pm \sqrt{\sqrt{3}-1}$
(2) $\pm \sqrt{\sqrt{3}+1}$
(3) $\pm \sqrt{\sqrt{2}-1}$
(4) $\pm \sqrt{\sqrt{2}+1}$
27. If the perturbation $H^{\prime}=a x$, where a is a constant, is added to infinite square well potential

$$
\mathrm{v}(\mathrm{x})= \begin{cases}0 & \text { for } 0 \leq \mathrm{x} \leq \pi \\ \infty & \text { othewise }\end{cases}
$$

The correction to the ground state energy to first order is a is
(1) $\frac{a \pi}{2}$
(2) $a \pi$
(3)

(4)

28. An ideal gas of non - relativistic fermions in 3-dimension is at OK. When both the number density and mass of the particles are doubled, then the energy per particle is multiplied by a factor
(1) $2^{1 / 2}$
(2) 1
(3) $2^{1 / 3}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(4) $2^{-1 / 3}$
29. A monoatomic gas consists of atoms with two internal energy, ground state $\mathrm{E}_{0}=0$ and an excited state $\mathrm{E}_{1}=\mathrm{E}$. The specific heat of the gas is given by
(1)

(2)
$\frac{\mathrm{E}^{2} \mathrm{e}^{\mathrm{E} / \mathrm{Kt}}}{\mathrm{KT}^{2}\left(1+\mathrm{e}^{\mathrm{E} / \mathrm{Kt}}\right)^{2}}$
(4)

$$
\frac{3}{2} \mathrm{~K}+\frac{\mathrm{E}^{2} \mathrm{e}^{\mathrm{E} / \mathrm{KT}}}{\mathrm{KT}^{2}\left(1+\mathrm{e}^{\mathrm{E} / \mathrm{KT}}\right)^{2}}
$$

(3)

$$
\frac{3}{2} \mathrm{~K}-\frac{\mathrm{E}^{2} \mathrm{e}^{\mathrm{E} / K T}}{\mathrm{KT}^{2}\left(1+\mathrm{e}^{\mathrm{E} / K T}\right)^{2}}
$$

30. A uniform surface current is flowing in the positive y-direction over an infinite sheet lying in x y plane. The direction of the magnetic field is
(1) along \hat{i} for $z>0$ and along $-\hat{i}$ for $z>0$
(2) along \hat{k} for $a>0$ along $-\hat{k}$ for $z<0$
(3) along $-\hat{i}$ for $z>0$ and along \hat{i} for $z>0$
(4) along - \hat{k} for $a z>0$ along \hat{k} for $z<0$
31. A simple cubic crystal with lattice parameter a, undergoes transition into a tetragonal structure with lattice parameters $a_{t}=b_{t}=\sqrt{2} a_{c}$ and $c_{t}=2 a$ below a certain temperature . The ratio of the interplanar spacings of (10ll $\left.\begin{array}{ll}1 & 0\end{array} 1\right)$ planes for the-cubic and the tetragonal structures is

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(1) $\sqrt{\frac{1}{6}}$
(2) $\frac{1}{6}$
(3) $\sqrt{\frac{3}{8}}$
(4) $\frac{3}{8}$
32. The pressure of a nonrelativistic free fermi gas in three-dimensions depends, at $T=0$, on the density of fermions n as
(1) $n^{5 / 3}$
(2) $n^{1 / 3}$
(3) $n^{2 / 3}$
(4) $n^{4 / 3}$
33. The dc current gain ${ }^{(\beta) \text { of a BJT is 50. Assuming that The emitter injection efficiency is }}$ 0.995 , the base transport factor is :-
(1) 0.980
(2) 0.990
(3) 0.985
(4) 0.995
34. A particle of mass m moves inside a bowl. If the surface of the bowl is given by the equation $a x^{2}+a y^{2}-2 z=0$, where a is constant, the langragian of the particle is

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(1) $\frac{1}{2} m\left(r^{2}+r^{2} \phi^{2}-g a r^{2}\right)$
(2) $\frac{1}{2} m\left[\left(1+a^{2} r^{2}\right) r^{2}+r^{2} \phi^{2}\right]$
(3)
$\frac{1}{2} m\left[\left(1+a^{2} r^{2}\right) r^{2}+r^{2} \phi^{2}-g a r^{2}\right]$
(4)
$\frac{1}{2} m\left[r^{2}+r^{2} \phi^{2}+r^{2} \sin ^{2} \theta \phi^{2}-g a r^{2}\right]$
35. A lattice has the following primitive vectors (in \AA) :

$$
\vec{a}=2(\hat{j}+\hat{k}), \vec{b}=2(\hat{k}+\hat{i}), \vec{c}=2(\hat{i}+\hat{j})
$$

The reciprocal lattice corresponding to the above lattice is
(1) BCC lattice with cube edge of

$$
\left(\frac{\pi}{2}\right) \AA^{-1}
$$

(2) BCC lattice with cube edge of $(2 \pi) \AA^{-1}$
(3) FCC lattice with cube edge of

$$
\left(\frac{\pi}{2}\right) \AA^{-1}
$$

(4) FCC lattice with cube edge of $(2 \pi) \AA^{-1}$
36. A computer system has a 4 K work cache organised in blockset associative manner with 4 blocks per set, 64 words per block. The no. of bits in the set \& WORD fields of the main memory address formula is :-
(1) 16,4
(2) 6,4
(3) 7,2

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(4) 4,6
37. X-Ray of wavelength $\lambda=\mathrm{a}$ is reflected from the (111) plane of a simple cubic lattice. If the lattice constant is a, the corresponding Bragg angle (in radian) is
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{3}$
(4)
(4) $\frac{\pi}{8}$
38. The critical magnetic fields of a super conductor at temperatures 4 K and 8 K are $11 \mathrm{~mA} / \mathrm{m}$ and $5.5 \mathrm{~mA} / \mathrm{m}$ respectively. The Transition temperature is approximately -
(1) 8.4 k
(2) 10.6 k
(3) 12.9 k
(4) 15.0 k
39. The dispersion relation of phonons in a solid is given by . $\omega^{2}(k)=\omega_{0}{ }^{2}\left(3-\operatorname{cosk}_{x} a-\operatorname{cosk}_{y} a-\operatorname{cosk}_{z} a\right)$. The velocity of the phonons at large wavelength is
(1) $\frac{\omega_{0} a}{\sqrt{3}}$
(2) $\omega_{0} a$
(3) $\sqrt{3} \omega_{\mathrm{o}} \mathrm{a}$
(4) $\omega_{0} a / \sqrt{2}$
40. A thermodynamic system is maintained at constant temperature and pressure. In thermodynamic equilibrium, its
(1) Libbs free energy is minimum
(2) enthalpy is maximum
(3) Helmholtz free energy is minimum.
(4) Internal energy is zero.

PART-C (Q. 41-60)

41. Consider a system of N non - interacting distinguish able spin $\overline{2}$ particles each of magnetic moment μ. The system is at an equilibrium temperature T is a magnetic field B
such that n - particles have their magnetic moments aligned parallel to B. Then the ratio \bar{N} is \qquad .
(1) 1
(2) 2
(3)
(4)

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
42. For a system of two bosons each of which can occupy any at the two energy levels 0 and \in the mean energy of the system at temperature T with

$$
\beta=\frac{1}{\mathrm{~K}_{\mathrm{B}} \mathrm{~T}}
$$ is given by

(1) $\frac{\in \mathrm{e}^{-\beta \epsilon}+2 \in \mathrm{e}^{-2 \beta \epsilon}}{1+2 \mathrm{e}^{-\beta \epsilon}+\mathrm{e}^{-2 \beta \epsilon}}$
(2) $\frac{1+\epsilon \mathrm{e}^{-\beta \epsilon}}{2 \mathrm{e}^{-\beta \epsilon}+\mathrm{e}^{-2 \beta \epsilon}}$
(3) $\frac{2 \in \mathrm{e}^{-\beta \epsilon}+\epsilon \mathrm{e}^{-2 \beta \epsilon}}{1+\mathrm{e}^{-\beta \epsilon}+\mathrm{e}^{-2 \beta \epsilon}}$
(4) $\frac{\mathrm{e}^{-\beta \epsilon}+2 \in \mathrm{e}^{-2 \beta \epsilon}}{1+\mathrm{e}^{-\beta \epsilon}+\mathrm{e}^{-2 \beta \epsilon}}$
43. Using Cauchy's integral formula, evaluate

$$
\int_{c} \frac{z d z}{\left(9-z^{2}\right)(z+i)}
$$

, where c is the circle $|\mathrm{z}|=2$ described in + ve sense.
(1) 0
(2) 5
(3) $4 \pi_{i}$
(4) $2 \pi_{i}$
44. The Taylor expansion of the function $\ln (\cosh x)$, where x is real, about the point $x=0$ starts with the following terms

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(1) $-\frac{1}{2} \mathrm{x}^{2}+\frac{1}{12} \mathrm{x}^{4}+--$
(2) $\frac{1}{2} x^{2}-\frac{1}{12} x^{4}+---$
(3) $-\frac{1}{2} \mathrm{x}^{2}+\frac{1}{6} \mathrm{x}^{4}+--$
(4) $\frac{1}{2} x^{2}+\frac{1}{6} x^{4}+---$
45. Given a 2×2 unitary matrix U satisfying $U+U=U U+=1$ with det $U=e^{i Q}$, one can construct a unitary

$$
V(V+V=V Y+=1)_{\text {matrix with }} \mathrm{det} V=1 \text { from it by }
$$

(1) multiplying U by $\mathrm{e}^{-\mathrm{i} \phi / 2}$
(2) multiplying U by $\mathrm{e}^{-\mathrm{i} \phi}$
(3) multiplying any single element of U by $\mathrm{e}^{-i \phi}$
(4) multiplying any now or column of U by $\mathrm{e}^{-\mathrm{i} \phi / 2}$
46. A constant force F is applied to a relativistic particle of rest mass m. If the particle stars from rest at $t=0$, its speed after a time t is.

Ft

(1) m
(2) $c \tan h$

$$
\left(\frac{\mathrm{Ft}}{\mathrm{mc}}\right)
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(3) $c\left(1-e^{-F t / m c}\right)$
(4)
Fct
$\overline{\sqrt{F^{2}} t^{2}+m^{2} c^{2}}$
47. The potential of a diatomic molecule as a function of distance r between the atoms is given
by $v(r)=\frac{P}{r^{12}}-\frac{q}{r^{6}}$
. The value of potential at equilibrium separation between the atoms is
(1)

(2)

$$
\frac{-q^{2}}{2 p}
$$

(3)

(4)
$\frac{-4 p^{2}}{q}$
48. Two particles of identical mass move in circular orbit under a central potential $\mathrm{v}(\mathrm{r})=\frac{1}{2} \mathrm{kr}^{2}$. Let \square_{1} and \square_{2} be the angular momenta and r_{1} and r_{2} be the radii of the orbits

$$
\underline{\square_{2}}=4
$$

respectively μ. The value of r_{1} / r_{2} is
(1) $\sqrt{2}$
(2) $\frac{1}{\sqrt{2}}$
(3) 2
(4) $\frac{1}{2}$
49. The degree of polarization for ordinary light reflected from glass at an incident angle 45° is (1) 83.3%
(2) 6.7%
(3) 28.1%
(4) 60%
50. Two infinite long grounded metal plates, again at $y=0$ and $y=a$, are connected at $X= \pm b$ by metal strips maintained at a constant potential V_{0}, as a thin layer of insulation at each corner prevents them from shorting out. The potential inside the resulting rectangular pipe is
(1)

$$
v(x, y)=\frac{u v_{0}}{\pi} \sum_{n=1,3,5} \frac{1}{n} \frac{\cosh (n \pi x / a)}{\cosh (n \pi b / a)} \sin (n \pi y / a)
$$

(2) $v(x, y)=\frac{v_{0}}{\pi} \sum_{n=1,3,5} \frac{1}{n} \frac{\cosh (n \pi x / a)}{\cosh (n \pi b / a)} \sin (n \pi y / a)$
(3) $\left._{v(x, y)}\right) \frac{u v_{0}}{\pi} \sum_{n=1,2,3} \frac{1}{n} \frac{\cosh \left(\frac{n \pi x}{a}\right)}{\cosh (n \pi b / a)} \sin \left(\frac{n \pi y}{a}\right)$
(4) $V(x, y)=0$
51. The electric field produced by a uniformly polarized sphere of radius R.
(1) $\frac{K \theta}{R^{2}}$

3K θ
(2) $5 R^{2}$
(3) $\frac{-P}{3 \epsilon_{0}}$
(4) $\frac{-3 P}{5 \epsilon_{0}}$
52. Effective Hamiltonian for a system of two spin 2 particles is given as

$$
H=\alpha\left(S_{1 z}+S_{2 z}\right)+\beta \vec{S}_{1} \cdot \vec{S}_{2}
$$

Where S_{1} and S_{2} are the two spins and $S_{1 z}$ and $S_{2 z}$ are their z - components. The maximum gap between and singlet level is
(1) α
(2) β
(3) $\alpha+\beta$
(4) $\alpha_{-+} \beta$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
53. Let $\vec{L}=\left(L_{x}, L_{y}, L_{z}\right)$ denote the orbital angular momentum operators of a particle and let, $L_{+}=L_{x}+i L_{y}$ and $L_{-}=L_{x}-i L_{y}$. The particle is in an eigen state of L^{2} and L_{z} eigen value $\hbar^{2}(\ell+1)$ and $\hbar \ell$ respectively. The expectation value of $L_{+} L_{-}$in this state is
(1) $\ell \hbar^{2}$
(2) $2 \ell \hbar^{2}$
(3) 0
(4) $\ell \hbar$
54. Given the Hamiltonian operator for a two state system . $(\mathrm{H}=\mathrm{a}|1><1|-|2><2|+|1><2|+|2><1|)_{\text {The energy eigenvalues is/are }}$ \qquad .
(1) \perp
(2) $-\perp$
(3) ± 2
(4) $\pm \sqrt{2}$
55. A sphere of homogeneous linear dielectric material is placed in an otherwise uniform electric field E_{0}, then the electric field inside the sphere

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

ANSWER KEY

Ques	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	8	9	10
Ans	3	1	2	3	2	3	4	3	3	3
Ques	11	12	13	14	15	16	17	18	19	20
Ans	4	2	3	2	3	4	4	4	2	2
Ques	21	22	23	24	25	26	27	28	29	30
Ans	4	1	1	2	4	3	1	4	3	4
Ques	31	32	33	34	35	36	37	38	39	40
Ans	3	1	3	3	1	4	3	2	4	1
Ques	41	42	43	44	45	46	47	48	49	50
Ans	3	4	2	2	1	4	1	4	1	1
Ques	51	52	53	54	55					
Ans	3	3	1	4	1					

HINTS AND SOLUTIONS :

1.(3)

on analysis we get this easily.
2.(1) A daily calendar shut size $=10 \times 10 \mathrm{c} . \mathrm{m}$.

Two sides printed month calendar have six sheets. So
Total area can be covered is $=6 \times 10 \times 10 \mathrm{c} . \mathrm{m}^{2}$

Mobile: 9001297111,9829567114
E-Mail: info@vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
\text { Floor area } & =5 \times 7.3 \mathrm{~m}^{2} \\
\% \text { Area } & =\frac{6 \times 10 \times 10}{5 \times 7.3 \times(100)^{2}} \times 100=0.1 \quad \text { Ans. }
\end{aligned}
$$

3.(2) time

Given that the graph between the speed and time.
From the figure it is clear that speed is changing with time. In starting it increases and then decrease so that means at any instance speed will be zero. We know that acceleration is directly proportional to velocity.

So the acceleration will be zero once on the path.

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

4.(3)

From the fig $\angle \mathrm{BOA}=30^{\circ}=\angle \mathrm{A}^{\prime} \mathrm{OB}^{\prime}(\because$ these are alternate angles $)$
So the direction of hill B from hill A is $N 30^{\circ} \mathrm{E}$ or $S 30^{\circ} \mathrm{E}$
$S 30^{\circ}$ E given in option (3).
Option (3) is correct.
5.(2) The percentage of variability over the average of that year
year $2000 \rightarrow\left(\frac{50}{150} \times 100\right)=33.33 \%$
year $2001 \rightarrow\left(\frac{75}{250} \times 100\right)=30 \%$
year $2002 \rightarrow\left(\frac{75}{200} \times 100\right)=37.5 \%$
year $2003 \rightarrow\left(\frac{50}{100} \times 100\right)=50 \%$
Thus it is least for the year 2001.

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
6.(3) No. of students are x.

$$
\frac{20}{100} \times x=\frac{x}{5}-\text { get job, in 1st year }
$$

remaining students $x-\frac{x}{5}=\frac{4}{5} x$

$$
\frac{20}{100} x \frac{4}{5} x=\frac{4}{5} x \text { get job in II year }
$$

$$
\begin{aligned}
& \frac{4}{5} \times \frac{4}{25}-x=16 \\
& \frac{20 x-4 x}{25}=16 \\
& 16 x=25 \times 16 \\
& x=25
\end{aligned}
$$

so no. of students are 25.
7.(4) \quad Volume of cylinder $=\pi r^{2} h$
where h is the height of water level.

After dipping, Let height become h .
then volume of cylinder $=\pi r^{2}{ }^{\prime}$ '
Volume of hemisphere of radius $\mathrm{r} / 2$ is $=\frac{2}{3} \pi\left(\frac{\mathrm{r}}{2}\right)^{3}$
It is clear that
equation $(1)+(3)=(2)$
$\Rightarrow \quad \frac{2}{3} \pi \frac{r^{3}}{8}+\pi r^{2} h=\pi r^{2} h, \quad \Rightarrow \quad h^{\prime}-h=\frac{r}{12}$
Ans.

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
8.(3)

trapezium is ' $A B C D$ '.
The length of the longer of the two parallel sides of trapezium is 10 cm .

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Area of $\triangle \mathrm{ABC}=\frac{1}{2} \mathrm{~b} \times \mathrm{h}=\frac{1}{2}(3 \times 3)=\frac{1}{2}$
Area of $\Delta \mathrm{QST}=\frac{1}{2}(\mathrm{Q} .2 \times \mathrm{Q} .2)=0.02$
Ratio $=\frac{9 \times 100}{2 \times 0.02}=225$
10.(3) Total possible cases.
(i)

26	9

(ii)
A-ZA-ZDigit

26	1	9

(iii)

(iv)

(v)

(vi)

(vii)

(viii)
A-Z A-Z Digit DigitDigitDigit

26	1	9	1	1	1

Total 8 type of configurations. Product of entries in each $=234$
Total $=234 \times 8=1872$
A O Q E
C M S C
E K 4 A
11.(4)
G

Solution one letter is missing alternate are giving.
A

$B-N$
C \qquad
D L
E \qquad

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

F \qquad J
$\mathrm{G} \rightarrow \mathrm{H} \rightarrow$ I
12.(2) For maximum $\frac{X}{Y} \Rightarrow X=$ maximum $=5 ; Y=$ minimum $=8$
\Rightarrow maximum $\frac{X}{Y}=\frac{5}{8}$
For minimum $\frac{X}{Y} \Rightarrow X=$ minimum $=3 ; Y=$ maximum $=11$
$\Rightarrow \frac{X}{Y}=\frac{3}{11}$
13.(3) $y=5 x^{2}+3$
$y^{\prime}=5(2 x)=10(x)$
$y^{\prime}=10 x$
$=\mathrm{m}$
equation of a tangent which passes through the point $(0,3)$

$$
\begin{align*}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=m(x-0) \\
& y-3=m x \\
& y-3=0 \\
& y=3 \tag{1}
\end{align*}
$$

This is the equation of the tangent and it is parallel to the x axis because $\mathrm{y}=$ constant $=$ parallel the to x - axis.
14.(2) If the price is x (at 20% discount), then (x) $.8=192$; so $x=192 / .8=240$;

If the full price is Y then $\mathrm{Y} x .8=240 ; \mathrm{Y}=240 / .8=300$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
15.(3)

Pyramid have total 8 edge.
As we want 8 strands so by keeping wire like

A, B, C put in one time and D, E, F, G in next time.
16.(4) Pole is at $z=0$
circle $|z-2|=1 \Rightarrow \int \frac{e^{2} \sin z}{z^{2}} d z=2 \pi i \times 0=0$
17.(4)
$L\{f(x)\}=\int_{0}^{\infty} e^{-S x} f(x) d x=\int_{3}^{3} e^{-S x} f(x) d x+\int_{3}^{\infty} e^{-S x} f(x) d x \int_{=}^{\infty}(x-3) e^{-S x} d x$
$L\{f(x)\}=\left.(x-3) \frac{e^{-S x}}{-S}\right|_{3} ^{\infty}-\int_{3}^{\infty} 1 .\left(\frac{e^{-S x}}{-S}\right) d x=0-\frac{1}{S} \int_{3}^{\infty} e^{-S x} d x$
$L\{f(x)\}=\frac{1}{S}\left[\frac{e^{-s x}}{-S}\right]_{3}^{\infty}=S^{-2} e^{-s x}$
18.(4) For coF ; $\left(D^{2}-1\right) y=0, m= \pm 1 \Rightarrow C . F=c_{1} e^{t}+c_{2} e^{-t}$

$$
\text { P.I }=\frac{1}{D^{2}-1} 2 \operatorname{cosht}=\frac{1}{D^{2}-1} 2\left(\frac{e^{t}+e^{-t}}{2}\right)
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& =\frac{1}{D^{2}-1} e^{t}+\frac{1}{D^{2}-1} e^{-t}=\frac{t}{2} e^{t}+\frac{t}{2}\left(e^{-t}\right) \\
& \Rightarrow y=c_{1} e^{t}+c_{2} e^{-t}+\frac{t}{2} e^{t}-\frac{t}{2} e^{-t} \\
& \Rightarrow y(0)=0 \Rightarrow c_{1}+c_{2}=0
\end{aligned}
$$

$\frac{d y}{d t}=c_{1} e^{t}-c_{2} e^{-t}+\frac{t}{2} e^{t}+\frac{1}{2} e^{t}+\frac{t}{2} e^{-t}-\frac{1}{2} e^{-t}$

$$
\left.\frac{\mathrm{dy}}{\mathrm{dt}}\right|_{\mathrm{t}=0}=0 \Rightarrow \mathrm{c}_{1}-\mathrm{c}_{2}+0+\frac{1}{2}+0 \frac{-1}{2}=0
$$

$$
c_{1}-c_{2}=0 \Rightarrow c_{1}=0, c_{2}=0
$$

Thus $\Rightarrow y=\frac{t}{2} e^{t}-\frac{t}{2} e^{-t} \Rightarrow y=t \sinh t$
So, the solution of the diff. eq^{n} is
$y=t \sin h t$
19.(2) We know that Escape velocity $=\sqrt{2 g R}$
$\frac{\text { Escape velocity of earth }}{\text { Escape velocity of mass }}=\sqrt{\frac{g_{e} R_{e}}{g_{m} R_{m}}}$

$$
\begin{gathered}
\frac{R_{e}}{R_{m}}=\frac{3}{4} \& \frac{g_{e}}{g_{m}}=2.3 \\
\frac{v_{e}}{v_{m}}=\sqrt{\frac{3}{4} \times 2.3}=1.3
\end{gathered}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
20.(2) $\tau^{-} \rightarrow \pi^{-}+{ }^{\mathrm{V}}$

From conservation of energy
$M_{\tau} \mathrm{C}^{2}=\mathrm{E}_{\pi}+\mathrm{E}_{\nu}$
$\mathrm{E}_{\pi}^{2}=\mathrm{p}^{2} \mathrm{c}^{2}+\mathrm{M}_{\pi}^{2} \mathrm{c}^{4}$ and
$E_{v}^{2}=\mathrm{P}^{2} \mathrm{c}^{2}$ since momentum of ${ }^{-} \pi$ and ${ }^{\mathrm{v}}$ is same
$M_{\tau} c^{2}=E_{\pi}+E_{v}, M_{\pi}^{2} c^{4}=E_{\pi}^{2}-E_{v}^{2}=E_{v}-E_{v}=\frac{M_{\pi}^{2} c^{4}}{M_{\tau} c^{2}}$
$E_{\pi}-E_{v}=\frac{M_{\pi} c^{2}}{M_{\tau}}$
and $E_{\pi}+E_{v}=M_{\tau} c^{2} \Rightarrow E_{\pi}=\left(\frac{M_{\tau}^{2}+M_{\pi}^{2}}{2 M_{\tau}}\right) c^{2}$
21.(4) $H=x P_{x}-y P_{x}+\frac{1}{2} y^{2}-\frac{1}{2} x^{2}$

$$
\begin{aligned}
& \frac{\partial H}{\partial x}=-P_{x} \Rightarrow P_{x}-x=-P_{x} \\
& \frac{\partial H}{\partial x}=-P_{y} \Rightarrow-P_{y}+y=-P_{y} \\
& \frac{\partial H}{\partial x}=x \Rightarrow x=x \\
& \text { and } \frac{\partial H}{\partial x}=y \Rightarrow-y=y
\end{aligned}
$$

After solving four differential equation and eliminating time t and using boundary condition one will get $x=\frac{1}{x}$ \&

CHPNM
VPM CLASSES CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
P_{x}=\frac{1}{2 P_{y}}
$$

Both results satisfy by hyperbola equation.
22.(1) $\vec{E}=\vec{E}_{0} \quad \cos (\vec{K} \cdot \vec{r}-\omega t)$

$$
\overrightarrow{\mathrm{B}}=\frac{\mathrm{K} \times \mathrm{E}_{0}}{\mathrm{c}} \cos (\mathrm{~K} \cdot \mathrm{r}-\omega \mathrm{t})
$$

Power crossing the loop is

$$
\begin{aligned}
& \overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{A}} \cdot\left(\mathrm{E} \times \frac{\overrightarrow{\mathrm{B}}}{\mu_{0}}\right) \\
& =\frac{1}{\mu_{0} \mathrm{C}} \overrightarrow{\mathrm{~A}} \cdot \mathrm{E}_{0} \times\left(\mathrm{K} \times \mathrm{E}_{0}\right) \cos ^{2}\left(\square \cdot \square \cdot \mu_{0} \mathrm{c}\right) \\
& \left.\langle\mathrm{P}\rangle \frac{1}{\mu_{0}} \mathrm{~A} \cdot\left[\mathrm{KE} \mathrm{E}_{0}\right]<\cos ^{2}(\mathrm{~K} \cdot \mathrm{r}-\omega \mathrm{t})\right\rangle
\end{aligned}
$$

$$
=\frac{1}{2 \mu_{0} c} E_{o}^{2} A \cdot \square
$$

23.(1)

$$
E=E_{0} \exp [i(k \cdot r-\omega t)]
$$

$$
\nabla^{2} E=k^{2} E_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)]
$$

$$
\nabla^{2} \mathrm{E}=\mathrm{k}^{2} \mathrm{E}
$$

$$
\frac{\partial^{2} E}{\partial t^{2}}=\omega^{2} E
$$

WhatsApp: 9001894070
Website: www.vpmclasses.com
$\nabla^{2} E=\frac{1}{c^{2}}\left[\frac{\partial^{2} E}{\partial t^{2}}+\omega^{\prime 2} E\right]$
$k^{2} E=\frac{1}{c^{2}}\left[\omega^{2} E+\omega^{2} E\right]$
$c_{2} k_{2}=\omega^{2}+\omega^{\prime 2}$
$\omega^{2}=c^{2} k^{2}-\omega^{\prime 2}$
24.(2) The equation of motion of accelerated charge in sinusoidally varying electric field \vec{E} is given by

$$
m \vec{a}=q \vec{E} \Rightarrow \frac{d^{2} r}{d t^{2}}=\frac{q E_{0}}{m} e^{- \text {iot }}
$$

$$
\vec{r}=\frac{-q E_{0}}{m \omega^{2}} e^{- \text {iot }}
$$

$$
\text { But } p=q r
$$

$$
=\frac{-q^{2} E_{0}}{m \omega^{2}} e^{-i \omega t}
$$

$$
|\vec{p}|=\left|-\frac{q^{2} E_{0}}{m \omega^{2}} e^{- \text {iot }}\right|
$$

$$
p_{0} e^{- \text {iott }}=\left|-\frac{q^{2} E_{0}}{m \omega^{2}}\right| e^{- \text {iot }}
$$

$$
p_{0}=\left|\frac{q^{2} E_{0}}{m \omega^{2}}\right|=\frac{q \vec{a}}{\omega^{2}}
$$

$$
\overrightarrow{\mathrm{a}}=\frac{q \mathrm{E}_{0}}{\mathrm{~m}^{2}}
$$

25.(4)

$$
A \psi_{1}=\psi_{2} \quad \& A \psi_{2}=\psi_{1}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& \Rightarrow \int \psi^{*} A \psi d x=\int\left(\frac{3 \psi_{1}+4 \psi_{2}}{5}\right) A \frac{\left(3 \psi_{1}+4 \psi_{2}\right)}{5} d x \\
& \Rightarrow \int \psi^{*} A \psi d x=\frac{1}{25} \int\left(3 \psi_{1}+4 \psi_{2}\right)\left(4 \psi_{1}+3 \psi_{2}\right) d x \\
& \int \psi^{*} A \psi d x=\frac{1}{25}\left[(3 \times 4) \int \psi_{1}^{2} d x+3 \times 4 \int \psi_{2}{ }^{2} d x\right]_{=} \frac{24}{25}=0.96
\end{aligned}
$$

26.(3) Normalization constant $\int|\psi(x)|^{2} \mathrm{~d} x=1$

Therefore, we check whether $\int|\psi(x)|^{2} d x=1$ or not $\int|\psi(x)|^{2} d x=\int_{-\infty}^{\infty} \frac{\left(1+x^{2}\right)}{\left(1+x^{2}\right)} d x$
But the particle is most likely to be found where $|\psi(x)|^{2}$ is maximum, or
$|\psi(x)|_{\text {is maximum where }}^{2} \frac{\mathrm{~d}}{\mathrm{dx}}|\psi(\mathrm{x})|^{2}=0$
$\frac{d}{d x}\left(\frac{1+x^{2}}{1+x^{4}}\right)=\frac{2 x}{1+x^{4}}-\frac{\left(1+x^{4}\right) 4 x^{2}}{\left(1+x^{4}\right)^{2}}$
$\Rightarrow 2 x\left(1+x^{4}\right)=4 x^{3}\left(1+x^{2}\right)$
$\Rightarrow x^{4}+2 x^{2}-1=0$
$x^{2}=\frac{-2+\sqrt{4+4}}{2}=\sqrt{2}-1$
$x= \pm \sqrt{\sqrt{2}-1}$
The particle is most likely to found $x= \pm \sqrt{\sqrt{2}-1}$
27.(1) Here $v(x)=0$ for $0 \leq x \leq \pi$

$$
=\infty \text { otherwise }
$$

Applying schrondiger equation

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& \frac{d^{2} \psi}{d x^{2}}+\frac{2 m}{\hbar^{2}}(E-v) \psi=0 \\
& \frac{d^{2} \psi}{d x^{2}}+\frac{2 m}{\hbar^{2}} \quad E \psi=0 \\
& \psi=A \cos k x+B \operatorname{sinkx}
\end{aligned}
$$

Applying boundary conditions $\psi(n)=\Psi(\pi)=0$
A = 0
$\psi=B \operatorname{sinkx} \Rightarrow$ Applying normalization
$\int_{0}^{\pi} \psi \psi^{*} \mathrm{dx}=1$
$B^{2} \int_{0}^{\pi} \sin ^{2} k x d x=1 \Rightarrow B^{2} \int_{0}^{\pi}\left(\frac{1-\cos 2 k x}{2}\right) d x=1$
$\mathrm{B}^{2}\left[\left(\frac{\pi}{2}\right)-\frac{1}{4 \mathrm{k}}(\sin 2 \mathrm{kx})_{\sigma}^{\pi}\right]=1$
$B=\sqrt{2 / \pi} \Rightarrow \psi=\sqrt{\frac{2}{\pi}}$ sinkx
The energy correction due to $\mathrm{H}^{\prime}=\mathrm{ax}$ is
$\langle E\rangle=\int_{0}^{\pi} \psi^{*} H^{\prime} \psi d x$
$<E>=\frac{2 a}{\pi} \int_{0}^{\pi} x \sin ^{2} k x d x$
$\Rightarrow E=\quad \frac{a \pi}{2}$
29.(3)
$E_{0}=0, E_{1}=E$

CLASSES
VPM CLASSES CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& z=\sum \mathrm{e}^{-\beta \mathrm{E}_{\mathrm{i}}} \Rightarrow z=\mathrm{e}^{-\beta x_{0}}+\mathrm{e}^{-\beta E} \\
& \ln z=\ln \left(1+e^{-\beta E_{1}}\right) \\
& U=<E>=\frac{-\partial}{\partial \beta} \ln z=\frac{-\partial}{\partial \beta} \ln \left(I+e^{-\beta E}\right) \\
& U=-\frac{I}{\left(I+e^{-\beta E}\right)}(-E) e^{-\beta E} \\
& U=\frac{E e^{-\beta E}}{I+e^{-\beta E}} \quad \square \quad \beta=K T \\
& \left(\frac{\partial U}{\partial T}\right)_{V}=C_{V}=\frac{\left(I+e^{-E / K T}\right) E \cdot e^{-\frac{E}{K T}} \cdot\left(\frac{E}{K T^{2}}\right)-E \cdot e^{-E / K T} \cdot e^{-\frac{E}{K T}}\left(\frac{E}{K T^{2}}\right)}{\left(1+e^{-\frac{E}{K T}}\right)^{2}} \\
& C_{v}=\frac{\frac{E^{2}}{K T^{2}} e^{-\frac{E}{K T}}+\frac{E^{2}}{K T^{2}} e^{-\frac{2 E}{K T}}-\frac{E^{2}}{K T^{2}} e^{-\frac{2 E}{K T}}}{\left(1+e^{-\frac{E}{K T}}\right)^{2}}=\frac{E^{2} e^{\frac{E}{K T}}}{K T^{2}\left(1+e^{\frac{E}{K T}}\right)^{2}}
\end{aligned}
$$

If gas will classically allowed then

$$
\mathrm{C}_{\mathrm{v}}=\frac{3}{2} \mathrm{~K}
$$

$$
C_{v}=\frac{E^{2} e^{\frac{E}{K T}}}{K T^{2}\left(1+e^{\frac{E}{K T}}\right)^{2}}
$$

and due to quantum mechanically

$$
\therefore \quad C_{v}=\frac{3}{2} \mathrm{~K}+\frac{\mathrm{E}^{2} \mathrm{e}^{\mathrm{E} / \mathrm{KT}}}{\mathrm{KT}^{2}\left(1+\mathrm{e}^{\mathrm{E} / \mathrm{KT}}\right)^{2}}
$$

30.(4) from magnetostatic Boundary conditions

WhatsApp: 9001894070
Website: www.vpmclasses.com

Mobile: 9001297111,9829567114
E-Mail: info@vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\mathrm{B}_{\text {above }}^{11}-\mathrm{B}_{\text {below }}^{11}=\mu_{0}(\mathrm{~K} \times \mathrm{n})
$$

\therefore Given $^{\vec{k}=k \hat{j}}$
And $\hat{n}=\hat{\ell}+\hat{\jmath}$
$B_{\text {above }}^{11}=B_{\text {below }}^{11}=\mu_{0} K(\hat{J} \times(\hat{\ell}+\hat{J}))$

$$
=\mu_{0} \mathrm{~K}[\hat{\jmath} \times \hat{\ell}+0]
$$

$\underset{\substack{\text { above } \\(z>0)}}{\mathrm{B}_{1}^{11}}-\mathrm{B}_{\substack{\text { below } \\(2<0)}}^{11}=-\mu_{0} \mathrm{~K} \mathrm{k}$
So magnetic field is directed along $-k$ for $z>0$ and along $+k$ for $z<0$.
31.(3) $\because d=\frac{1}{\sqrt{\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}}+\frac{\ell^{2}}{c^{2}}}$

Given that $\mathrm{h}=1, \mathrm{k}=0, \ell=1$
For tetragonal and

$$
a_{t}=b_{t}=\sqrt{2} a_{c} \quad c_{t}=2 a c
$$

then

$$
d_{t}=\frac{1}{\sqrt{\frac{1^{2}}{2 \mathrm{ac}^{2}}+0+\frac{1^{2}}{4 \mathrm{ac}^{2}}}}
$$

$$
d_{t}=\frac{a_{c}}{\sqrt{\frac{1}{2}+\frac{1}{4}}} \Rightarrow d_{t}=\frac{a_{c}}{\sqrt{\frac{3}{4}}}=\frac{2 a c}{\sqrt{3}}
$$

for cubic $a_{t}=b_{t}=c_{t}$
then

$$
d_{c} \frac{1}{\sqrt{\frac{1}{a_{c}^{2}}+0+\frac{1}{a_{c}^{2}}}}=\frac{a_{c}}{\sqrt{2}}
$$

Now $=\frac{\mathrm{d}_{\mathrm{c}}}{\mathrm{d}_{\mathrm{t}}}=\frac{\mathrm{a}_{\mathrm{c}}}{\sqrt{2}} \times \frac{\sqrt{3}}{2 \mathrm{a}_{\mathrm{c}}}=\frac{\sqrt{3}}{2 \sqrt{2}}=\sqrt{\frac{3}{2.4}}=\sqrt{\frac{3}{8}}$
32.(1) The free energy in three dimension is defined as

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
$E_{f}=\frac{\hbar^{2}}{2 m}\left(\frac{3 \pi^{2} N}{v}\right)^{2 / 3}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3}$
The pressure of a nonrelativistic free fermi gas is defined as

$$
\begin{aligned}
& P_{f}=-\left(\frac{\partial E}{\partial v}\right)=\frac{3}{5} \times N \times \frac{\hbar^{2}}{2 m}\left(3 \pi^{2} N\right)^{2 / 3} \times\left(\frac{-2}{3}\right) v^{-5 / 3} \\
& P_{f}=\frac{2}{5} n E_{f}=\frac{2}{5} \times n \times \frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3} \\
& P_{f}=\frac{2}{5} \frac{\hbar^{2}}{2 m}\left(3 \pi^{2}\right)^{2 / 3} n^{5 / 3}
\end{aligned}
$$

33.(3) is correct

$$
\beta=50=><=\frac{\beta}{\beta+1}=\frac{50}{51}
$$

$$
\alpha=\beta^{*} \times \gamma
$$

$$
\beta^{*}=\left(\frac{50}{51}\right)\left(\frac{1}{0.995}\right)=0.9853
$$

34.(3) $\mathrm{L}=\frac{1}{2} \mathrm{~m}\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]-\mathrm{mgz}$

Where $a x^{2}+a y^{2}-2 z=0$
It has cylindrical symmetric. Thus $x=r \cos \phi, y=r \sin \phi ; z=\frac{1}{2} a\left(r^{2}\right)$

$$
\begin{aligned}
& \stackrel{g}{\mathrm{x}}=\stackrel{\mathrm{g}}{\mathrm{r}} \cos \phi-\mathrm{r} \sin \phi \stackrel{\mathrm{~g}}{\dot{\phi}} \\
& \stackrel{\mathrm{~g}}{\mathrm{y}}=\stackrel{\mathrm{g}}{\mathrm{r}} \sin \phi-\gamma \cos \phi \stackrel{\mathrm{g}}{\dot{\phi}} \\
& \stackrel{\mathrm{~g}}{\mathrm{z}}=\mathrm{a}(\stackrel{\mathrm{~g}}{\mathrm{r}})
\end{aligned}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
so , $L=\frac{1}{2} m\left[\left(1+a^{2} r^{2}\right) r^{2}+r^{2} \phi^{2}-g a r^{2}\right]$
35.(1) Primitive vector (Å)
$\overrightarrow{\mathrm{a}}=2(\hat{\mathrm{j}}+\hat{\mathrm{k}}) \mathrm{b}=2(\hat{\mathrm{k}}+\hat{\mathrm{i}}), \mathrm{c}=2(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
A two-dimensional lattice space. This is the primitive vector of "FCC" lattice "BCC" lattice is the reciprocal lattice of "FCC" lattice having following reciprocal vectors
$a_{1}=\frac{\pi}{2}[-\hat{i}+\hat{j}+\hat{k}]$
$b_{1}=\frac{\pi}{2}[+\hat{i}-\hat{j}+\hat{k}]$
$c_{1}=\frac{\pi}{2}[\hat{i}+\hat{j}-\hat{k}]$
So, reciprocal lattice of FCC is "BCC" lattice with cube edge of " 2 "
36.(4) There are 64 words in a block.

4 K cache has $\frac{4 \times 1024}{64}=64$ block.
since 'l' set has 4 blocks, There are 16 sets. ' 16 'sets heed a 4 - bit representation. In a set there are 4 blocks. So the block field needs 2 bits each block has 64 words. So the word field has 6 bits.
37.(3) According to Bragg's how $2 \mathrm{~d} \sin \theta=\lambda$
where $d=\frac{a}{\sqrt{h^{2}+k^{2}+\square^{2}}}=\frac{a}{\sqrt{1+1+1}}=\frac{a}{\sqrt{3}}$ for (111) plane

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\frac{\lambda}{2 \mathrm{~d}}=\frac{\mathrm{a}}{2 \times \frac{\mathrm{a}}{\sqrt{3}}}=\frac{\sqrt{3}}{2} \Rightarrow \theta=\sin ^{-2}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}
$$

38.(2) The relation between critical field and critical temperature is

$$
\mathrm{H}_{\mathrm{c}}(\mathrm{~T})=\mathrm{H}_{0}\left[1-\left(\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}}\right)^{2}\right]
$$

Let $\quad T=T_{1}, H_{C}\left(T_{1}\right)=T=T_{2}$

$$
\mathrm{T}_{\mathrm{c}}(\mathrm{~T})=\mathrm{H}_{\mathrm{C}}\left(\mathrm{~T}_{2}\right)
$$

Thus we get $\mathrm{H}_{\mathrm{C}}\left(\mathrm{T}_{1}\right)=\mathrm{H}_{0}\left[1-\left(\frac{T_{1}}{\mathrm{~T}_{\mathrm{c}}}\right)^{2}\right]$
$H_{C}\left(T_{2}\right)=H_{0}\left[1-\left(\frac{T_{2}}{T_{c}}\right)^{2}\right]$

$$
T_{C}=\sqrt{\frac{\frac{H_{C}\left(T_{1}\right)}{H_{C}\left(T_{2}\right)} T_{2}^{2}-T_{1}^{2}}{\frac{H_{C}\left(T_{1}\right)}{H_{C}\left(T_{2}\right)}-1}}=\sqrt{\frac{2(8)^{2}-4^{2}}{2-1}} \approx 10.6
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
$\Rightarrow \quad H_{c}\left(T_{1}\right)=11 \mathrm{~mA} / \mathrm{M}$
$\mathrm{H}_{\mathrm{C}}\left(\mathrm{T}_{2}\right)=5.5 \mathrm{~mA} / \mathrm{M}$
40.(1) By the thermodynamic relations we know that
(i) $d U=T d S-P d V$
at constant S and $\mathrm{V} \quad \mathrm{dU}=0$
(ii) $\mathrm{dF}=-\mathrm{PdV}-\mathrm{SdT}$
at constant temperature and volume $\mathrm{dF}=0$
(iii) $\mathrm{dH}=\mathrm{TdS}+\mathrm{VdP}$
at constant entropy and pressure
$\mathrm{dH}=0$
(iv) $\mathrm{dG}=\mathrm{VdP}-\mathrm{SdT}$
at constant temp. and pressure $\mathrm{dG}=0$
41.(3) Given that
$n \quad$ particle \rightarrow parallel to \vec{B}
$(N-n)$ particle \rightarrow antiparallel to \vec{B}

$$
\Omega=\frac{N!}{n!(N-n)!}
$$

Now $E_{1}=-n \mu B$

$$
E_{2}=-(N-n)(-\mu B)=(N-n) \mu B
$$

Total energy of the system $E=(N-2 n) \mu B$

$$
\frac{\partial \mathrm{E}}{\partial \mathrm{n}}=-2 \mu \mathrm{~B}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Again $\ln \Omega=\ln \mathrm{N}!-\ln \mathrm{n}!-\ln (\mathrm{N}-\mathrm{n})$!
\Rightarrow Entropy $\mathrm{s}=\mathrm{k} \ln \Omega$
$\frac{\partial s}{\partial n}=k\left[-\ln n-1+\ln (N-n)+\frac{N-n}{N-n}\right]$
$\frac{\partial s}{\partial \mathrm{n}}=\mathrm{k}\left[\ln \left(\frac{\mathrm{N}-\mathrm{n}}{\mathrm{n}}\right)\right]$
$\frac{\partial \mathrm{S}}{\partial \mathrm{E}}=\frac{1}{\mathrm{~T}} \Rightarrow \frac{-\mathrm{k}}{2 \mu \mathrm{~B}} \ln \left(\frac{\mathrm{~N}-\mathrm{n}}{\mathrm{n}}\right)=\frac{1}{\mathrm{~T}}$
$T=\frac{-2 \mu B}{k \ln \left(\frac{N-n}{n}\right)}$
$\frac{-k T}{2 \mu B}=\frac{1}{\ln \left(\frac{N-n}{n}\right)}$
$\frac{\mathrm{n}}{\mathrm{N}}=\frac{1}{1+\exp \left(-\frac{2 \mu \mathrm{~B}}{k T}\right)}$
42.(4) If both particle will in ground state the energy will 0 which is non degenerate.

If one particle is in ground state and other is in first excited state then energy is \in and non degenerate.

If both particle will in first excited state the energy will $2 \in$ which is non degenerate.
Average value of energy $=\frac{1}{z}\left(\mathrm{e}^{-\beta \epsilon}+2 \in \mathrm{e}^{-2 \beta \epsilon}\right)$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
where partition function $z=1+\mathrm{e}^{-\beta \epsilon}+2 \in \mathrm{e}^{-2 \beta \epsilon}$
44.(2) Given that, Taylor expansion of the function is given by $f(n)=\ln (\operatorname{cosnx})$ where x is real. Now, Taylor expansion of the function about the point $x_{0}=0$ is,
$f(x-0)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+\cdots--$
Now, $\mathrm{f}\left(\mathrm{x}_{0}\right)=\left.\ln \operatorname{coshx}\right|_{\mathrm{x}=0}=\ln \mathrm{i}=0$
$f^{\prime}\left(x_{0}\right)=\left.\frac{d}{d x}(\ln \cosh x)\right|_{x=0}=\frac{1}{\cosh x} \sinh x=0$
$f^{\prime \prime}\left(x_{0}\right)=\left.\frac{d^{2}}{d x^{2}}(\ln \cosh x)\right|_{x=0}=\left.\frac{d}{d x}\left(\frac{\sinh x}{\cosh x}\right)\right|_{x=0}$
$\cosh x \cosh x-\sinh x \sinh x$
$=$
$f^{\prime \prime \prime}(x)=0$ and $f^{\prime \prime \prime}\left(x_{0}\right)=\left.\frac{d^{4}}{d x^{4}}(\ln \cosh x)\right|_{x=0}=-2$
Now, put these values

$$
\begin{aligned}
f(n)= & 0+0+\frac{x^{2}}{2}+0-\frac{x^{4}}{4!} \times 2+--- \\
& \frac{x^{2}}{2}-\frac{x^{4}}{2 \times 3 \times 4} \times 2=\frac{x^{2}}{2}-\frac{x^{4}}{12}+---
\end{aligned}
$$

45.(1) Let the unitary matrix U is defined as

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
U=\left(\begin{array}{ll}
\alpha & 0 \\
0 & \alpha
\end{array}\right)
$$

Given that $\operatorname{det}(U)=|U|=e^{i \phi}$
$\left|\begin{array}{ll}\alpha & 0 \\ 0 & \alpha\end{array}\right|=e^{i \phi}$ or $\alpha^{2}=e^{i \phi}$
$\alpha=e^{i \phi / 2}$

Hence

$$
U=\left(\begin{array}{cc}
e^{i \phi / 2} & 0 \\
0 & e^{i \phi / 2}
\end{array}\right)
$$

Now, multiplying u by $\mathrm{e}^{\mathrm{i} \mathrm{\phi} / 2}$, we get
$V=e^{-i \phi / 2} . U=e^{-i \phi / 2}\left(\begin{array}{cc}e^{i \phi / 2} & 0 \\ 0 & e^{-i \phi / 2}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

So, $\operatorname{det}(\mathrm{V})=$
46.(4) $\frac{d p}{d t}=F \Rightarrow P=F t+c$

$$
\text { At } t=0, P=0 \text { so } c=0
$$

$$
\Rightarrow P=F t=\frac{\mathrm{mu}}{\sqrt{1-\frac{\mathrm{u}^{2}}{\mathrm{c}^{2}}}}=\mathrm{Ft} \Rightarrow u=\frac{\frac{\mathrm{F}}{\mathrm{~m}} \mathrm{t}}{\sqrt{1+\left(\frac{\mathrm{Ft}}{\mathrm{mc}}\right)^{2}}}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
u=\frac{F c t}{\sqrt{F^{2} t^{2}+m^{2} c^{2}}}
$$

47.(1) $v(r)=\frac{P}{r^{12}}-\frac{q}{r^{6}}$.for equilibrium $\frac{\partial v}{\partial r}=0$

$$
\Rightarrow(-6) \frac{q}{r^{7}}-\frac{12 p}{r^{13}}=0 \Rightarrow \frac{1}{r^{7}}\left[6 q-\frac{12 p}{r^{6}}\right]=0
$$

$$
=6 a-\frac{12 p}{r^{6}=0} \Rightarrow r=\left(\frac{12 p}{q}\right)^{1 / 6}
$$

$$
\left.\Rightarrow v\right|_{r}=\left(\frac{2 p}{q}\right)^{1 / 6}=\frac{-q}{\left(\frac{2 p}{q}\right)}+\frac{p}{\left(\frac{12 p}{q}\right)^{2}}
$$

$$
V=\frac{-q^{2}}{2 p}+\frac{q^{2}}{4 p}=\frac{-q^{2}}{4 p}
$$

48.(4) $V_{\text {eff }}=\frac{{ }^{2} r^{2}}{2}+\frac{1}{2} k r^{2}$ where J is angular momentum condition for circular orbit

$$
\begin{aligned}
& \frac{d V_{\text {eff }}}{d t}=0 \Rightarrow \frac{-\mathrm{J}^{2}}{\mathrm{mr}^{3}}+\mathrm{kr} \\
& \Rightarrow \mathrm{~J}^{2} \alpha \mathrm{r}^{4} \Rightarrow \mathrm{~J} \alpha \mathrm{r}^{2} \\
& \quad \frac{J_{1}}{\mathrm{~J}_{2}} \frac{r_{1}^{2}}{r_{2}^{2}} \Rightarrow \frac{r_{1}}{\mathrm{r}_{2}}=\sqrt{\frac{J_{2}}{J_{1}}} \quad \text { given that } \quad \frac{\mathrm{J}_{2}}{\mathrm{~J}_{1}}=4
\end{aligned}
$$

$$
\frac{r_{1}}{r_{2}}=\sqrt{\frac{1}{4}}=\frac{1}{2}
$$

49.(1) According to snell's law

$$
\begin{aligned}
& \frac{\sin \theta_{i}}{\sin \theta_{\mathrm{T}}}={ }_{\mathrm{n}} \mathrm{n}_{2} \\
& \theta_{\mathrm{i}}=45 \text { and }{ }_{\mathrm{n}} \mathrm{n}_{2}=1.5
\end{aligned}
$$

$$
\sin \theta_{T}=\frac{\sin \theta_{i}}{{ }_{1} n_{2}}=\frac{\sin 45}{1.5}=\frac{1}{\sqrt{2} \sqrt{1.5}}
$$

$$
\theta_{\mathrm{T}}=\sin ^{-1}\left(\frac{1}{2.121}\right)=28.1
$$

$$
R_{1}=\frac{\sin ^{2}\left(\theta_{i}-\theta_{T}\right)}{\sin ^{2}\left(\theta_{i}+\theta_{T}\right)}=\frac{\sin ^{2}(16.9)}{\sin ^{2}(73.1)}
$$

$$
=\left(\frac{0.2924}{0.9568}\right)^{2}=0.93392
$$

$$
R_{+}=\frac{\tan ^{2}\left(\theta_{i}-\theta_{T}\right)}{\tan ^{2}\left(\theta_{i}+\theta_{T}\right)}=\frac{\tan ^{2}(16.9)}{\tan ^{2}(73.1)}
$$

$$
=0.008526
$$

Degree of polarization

$$
P(Q)=\frac{R_{\perp}-R_{\|}}{R_{\perp}+R_{\|}}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
50.(1) The configuration is independent of Z. then by the Laplace's equation $\frac{\partial}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0$

$$
\begin{aligned}
& \text { But } V(-x, y)=V(x, y) \\
& e^{k x}+e^{-k x}=2 \cosh k x \\
& V(x, y)=\cosh x(c \sin k y+D \cos k y)
\end{aligned}
$$

CLASSES VPM CLASSES CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& D=0 \text { and } k=n \pi / a \text { so } \\
& v(x, y)=\cosh (n \pi x / a) \sin (n \pi y / a) \\
& v(x, y)=\sum_{n=1}^{\infty} c_{n} \cosh \left(\frac{n \pi x}{a}\right) \sin \left(\frac{n \pi y}{a}\right) \\
& v(b, y)=\sum_{n=1}^{\infty} c_{n} \cosh (n \pi b / a) \sin (n \pi y / a)=v_{0} \\
& c_{n} \cosh \left(\frac{n \pi b}{a}\right)=\left\{\begin{array}{l}
0 \text { if } n \text { is even } \\
\frac{u v_{0}}{n \pi} \text { if } n \text { is odd. }
\end{array}\right. \\
& v(x, y)=\frac{u v_{0}}{\pi} \sum_{n=1,3,5} \frac{1}{n} \frac{\cosh (n \pi x / a)}{\cosh (n \pi b / a)} \sin n \pi y / a
\end{aligned}
$$

51.(3) The volume bound change density

WhatsApp: 9001894070
Website: www.vpmclasses.com

Mobile: 9001297111,9829567114
E-Mail: info@vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$\theta \mathrm{P}_{\mathrm{b}}$ is zero, since P is $\mathrm{p} \cos \theta$
σ_{b} is zero, since P is uniform
but $\sigma_{b}=P . \hat{n}=P \cos \theta$

$$
\left\{\begin{array}{l}
\frac{P}{3 \varepsilon_{0}} r \cos \theta \text { for } r \leq R \\
\frac{P}{3 \varepsilon_{0}} \frac{R^{3}}{r^{2}} \cos \theta \text { for } r \geq R
\end{array}\right.
$$

$r \cos \theta=z$, the field inside the sphere is uniform

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
E=-\nabla v=\frac{-P}{3 \varepsilon_{0}} z^{\prime}=\frac{-P}{3 \epsilon_{0}}=\frac{-P}{3 \varepsilon_{0}} \text { for } r<R \text { outside the sphere the potential is identical }
$$

to that of a perfect dipole at the origin.

$$
v=\frac{P \cdot \hat{r}}{4 \pi \epsilon_{0} r^{2}} \text { for } r \leq R
$$

52.(3)
$H=\alpha S_{z}+\beta \overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}$
$S_{z}=S_{1 z}+S_{2 z}$
$\vec{S}_{1} \cdot \vec{S}_{2}=\frac{1}{2}$ $\left[\mathrm{S}_{2}-\mathrm{S}_{1}^{2}-\mathrm{S}_{2}^{2}\right]$

For triplet $\mathrm{s}=1$
$S_{z}=+1,0,-1$
$\overrightarrow{\mathrm{S}_{1}} \cdot \overrightarrow{\mathrm{~S}_{2}}=\frac{1}{2}\left(2-\frac{3}{2}\right)=\frac{1}{4}$
For singlet $S=0$
$S_{z}=0$
$\overrightarrow{S_{1}} \cdot \vec{S}_{2}=\frac{1}{2}\left(0-\frac{3}{2}\right)=\frac{-3}{4}$
$\mathrm{E}_{\text {singlet }}=$

$$
\frac{-3 \beta}{4}
$$

CLASSES
VPM CLASSES CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
$E_{\text {triplet }}= \begin{cases}\alpha+\frac{\beta}{4} ; & s_{z}=1 \\ \frac{\beta}{4} ; & s_{z}=0 \\ -\alpha+\frac{\beta}{4} ; & s_{z}=-1\end{cases}$
\Rightarrow maximum gap $=\alpha+\frac{\beta}{4}-\left(-\frac{3 \beta}{4}\right)$

$$
=\alpha+\beta
$$

53.(1) $L_{+}=L_{x}+i L_{y}$

$$
L_{-}=L_{x}-i L_{y}
$$

$$
L_{+} L_{-}=L_{x}^{2}+L_{y}{ }^{2}-L_{z}^{2}
$$

$$
<\psi_{\left|L_{+} L_{-}\right|} \psi_{>=<} \psi^{2}\left|L^{2}-L_{z}^{2}\right| \psi_{>}
$$

$$
=\left\langle\psi_{\left|L^{2}\right|} \psi_{>-<} \psi_{\left|L_{2}^{2}\right|} \psi_{>}\right.
$$

$$
=\hbar^{2} \ell(\ell+1)-\hbar^{2} \ell^{2}
$$

$$
<L_{+} L_{-}>=
$$

54.(4) Let $\mathrm{C}_{1}\left|1>+\mathrm{C}_{2}\right|^{2>}$ be an eigenket

Therefore $\mathrm{H}\left(\mathrm{C}_{1}\left|1>+\mathrm{C}_{2}\right| 2>\right)=\lambda\left(\left|1>+\mathrm{C}_{2}\right| 2>\right)$

$$
\mathrm{aC}_{1}(|1>+| 2>)+\mathrm{aC}_{2}(-|2>+| 1>)=\lambda\left(\mathrm{C}_{1}\left|1>+\mathrm{C}_{2}\right| 2>\right)
$$

WhatsApp: 9001894070
Website: www.vpmclasses.com

Mobile: 9001297111,9829567114
E-Mail: info@vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
equating coefficients of $\mid 1>$ on both sides for $\mid 2>$
Separately

$$
\begin{aligned}
& \mathrm{aC}_{1}+\mathrm{aC}_{2}=\lambda \mathrm{C}_{1} \\
& \mathrm{aC}_{1}-\mathrm{aC}_{2}=\lambda \mathrm{C}_{1}
\end{aligned}
$$

The system of equation in C_{1} and C_{2} has a non-trivial solution

$$
\begin{aligned}
& \quad\left|\begin{array}{cc}
a-\lambda & a \\
a & -a-\lambda
\end{array}\right|=0 \\
& -(a-\lambda)(a+\lambda)-a^{2}=0 \\
& \lambda= \pm \sqrt{2} a
\end{aligned}
$$

The energy eigenvalues are $\pm \sqrt{2} \mathrm{a}$
55.(1)
$V_{\text {in }}=V_{\text {out }}$ at $r=R$
$\in \frac{\partial v_{\text {in }}}{\partial r}=\epsilon_{0} \frac{\partial v_{\text {out }}}{\partial r} r=R$
$v_{\text {out }} \rightarrow-E_{0} r \cos \theta_{\text {for } r} \gg R$
$\mathrm{v}_{\mathrm{in}}(\mathrm{r}, \theta)=\sum \mathrm{Ar} \mathrm{r}^{\mathrm{P}}(\cos \theta)$
$\mathrm{v}_{\text {out }}(\mathrm{r}, \theta)=\mathrm{E}_{0} \mathrm{r} \cos \theta+\sum \frac{\mathrm{B}^{\square}}{\mathrm{r}^{[+1}} \mathrm{P}_{\square}(\cos \theta)$
at the boundary

VPM CLASSES CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& \sum_{\equiv=0}^{\infty} \operatorname{ar} \mathrm{P}_{(}(\cos \theta)=-\mathrm{E}_{0} R \cos \theta+\sum \frac{\mathrm{B}}{\mathrm{R}^{+1}} \mathrm{P} \cos \theta \\
& A R^{\square}=\frac{B^{\square+1}}{R^{\text {+1 }}}, \text { for } i \neq 1 \\
& A R=-E_{0} R+\frac{B}{R^{2}} \\
& E_{r} \cdot A R^{L-1}=-\frac{(\square+1)}{R^{+1}} \text { for } i \neq 1 \\
& \mathrm{E}_{\mathrm{r}} \mathrm{~A}_{\square}=-\mathrm{E}_{0}-\frac{2 \mathrm{~B}_{\square}}{\mathrm{R}^{3}} \\
& \mathrm{~A}_{\square}=\mathrm{B}_{\mathrm{a}}=0 \text { for } \mathrm{i} \neq 1 \\
& A_{\sqsupset}=\frac{-3}{E_{r}+2} E_{0} B_{\square}=\frac{E_{r}-1}{E_{r}+2} R^{3} E_{0} \\
& v_{\text {in }}(r, \theta)=\frac{-3 E_{0}}{\epsilon_{\mathrm{r}}+2} r \cos \theta=-\frac{3 \mathrm{E}_{0}}{\epsilon_{\mathrm{r}}+2} Z \\
& E=\frac{3}{\epsilon_{\mathrm{r}}+2} E_{0}
\end{aligned}
$$

WhatsApp: 9001894070
Website: www.vpmclasses.com

Mobile: 9001297111, 9829567114
E-Mail: info@vpmclasses.com

