ITT JAM MATHEMATICAL STATISTICS SOLVED SAMPLE PAPER

* DETAILED SOLUTIONS
* PROJECTED IIT JAM RANK

Attempt ALL the $\mathbf{6 0}$ questions.
There are a total of 60 questions carrying 100 marks.
Section-A contains a total of 30 Multiple Choice Questions (MCQ). Q. 1 - Q. 10 carry 1 mark each and Questi ons Q. 11 - Q. 30 carry 2 marks each. Section-B contains a total of 10 Multiple Select Questions (MSQ). Questions Q. 31 - Q. 40 belong to this section and carry 2 marks each with a total of 20 marks.

Section-C contains a total of 20 Numerical Answer Type (NAT) questions. Questions Q. 41 - Q. 60 belong to this section and carry a total of 30 marks. Q. 41 - Q. 50 carry 1 mark each and Questions Q. 51 - Q. 60 carry 2 marks each. In Section-A for all 1 mark questions, $1 / 3$ marks will be deducted for each wrong answer. For all 2 marks questions, $2 / 3$ marks will be deducted for each wrong answer. In Section-B (MSQ), there is NO NEGATIVE and NO PARTIAL marking provisions. There is NO NEGATIVE marking in Section-C (NAT) as well.

Time: 3 Hours
MAX.MARKS : 100
MARKS SCORED : \square
SECTION-A (Q. 1-30): MULTIPLE CHOICE QUESTIONs (MCQs)

1. Let $P=\left[\begin{array}{cccc}1 & 2 & 3 & -1 \\ 2 & 5 & 4 & 2 \\ 3 & 6 & 6 & 4 \\ 1 & 8 & 3 & 0\end{array}\right]$

Then rank of P equals
(A) 4
(B) 3
(C) 2
(D) 1
2. Which of the following is a linear transformation?
(A) $T: R^{3} \rightarrow R^{2}$ defined by $T(x, y, z)=(x, z)$
(B) $T: R^{3} \rightarrow R^{2}$ defined by $T(x, y, z)=(x+y, 2 z+1)$
(C) $T: R^{3} \rightarrow R^{2}$ defined by $T(x, y, z)=(x-y, z)$
(D) $T: R^{3} \rightarrow R^{2}$ defined by $T(x, y, z)=(y, x)$
3. If a sequence $\left\{x_{n}\right\}$ is monotone and bounded, then
(A) There exists a subsequence of $\left\{x_{n}\right\}$ that diverges
(B) There may exist a subsequence of $\left\{x_{n}\right\}$ that is not monotone
(C) All subsequences of $\left\{x_{n}\right\}$ converge to the same limit
(D) There exists atleast two subsequences of $\left\{x_{n}\right\}$ which converges to distinct limits.
4. Let $f: R \rightarrow R$ be defined by $f(x)=x\left(x^{2}-1\right)$, then
(A) f is neither one-one nor onto.
(B) f is one-one but not onto.
(C) f is onto but not one-one.
(D) f is one-one and onto.
5. Let a_{n} be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{1}{4}$. Then $\lim _{n \rightarrow \infty} \frac{e^{a_{n}^{2}}+a_{n}^{3}}{\log \left(e+a_{n}\right)}$ equals
(A) ∞
(B) $\left(\frac{e^{1 / 4}}{4}+\frac{1}{8}\right) \frac{1}{\log 2}$
(C) $\frac{e^{1 / 16}+\frac{1}{64}}{\log \left(e+\frac{1}{4}\right)}$
(D) 1
6. Let E and F be two events with $P(E)=0.6 ; P(F)=0.5 ; P\left(E \cap F^{C}\right)=0.4$. Then $P\left(F \mid E \cup F^{C}\right)$ is equal to,
(A) $\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $\frac{1}{8}$
(D) $\frac{1}{16}$
7. Let x be a continuous random variable with $p d f$

$$
f(x)=\frac{e^{-x^{2}}}{\sqrt{\pi}}, x \in R
$$

Then $E\left(x^{2}\right)$ equals
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) does not exist
8. Let x_{1}, x_{2}, x_{3} be a random sample from a distribution with a given pdf and a parameter $(\theta>0)$. If the expectation of the distribution is θ, then which of the following estimator for θ has the smallest variance?
(A) $\frac{x_{1}+2 x_{2}+x_{3}}{4}$
(B) $\frac{x_{1}+x_{2}+3 x_{3}}{5}$
(C) $\frac{x_{1}+2 x_{2}+3 x_{3}}{6}$
(D) $\frac{2 x_{1}+3 x_{2}+4 x_{3}}{9}$
9. Let the random variable x have uniform distribution on the interval $\left(0, \frac{\pi}{3}\right)$. Then $P(\cos x>\sin x)$ is
(A) 0
(B) $\frac{1}{4}$
(C) $\frac{2}{4}$
(D) $\frac{3}{4}$
10. Let $x_{n} \sim \operatorname{Exp}(n)$. Then the sequence x_{n} converges in probability to
(A) $\frac{1}{2}$
(B) $\frac{1}{4}$
(C) 0
(D) can not be found.
11. Player P_{1} tosses 5 fair coins and P_{2} tosses a fair die independently of P_{1}. The probability that the number of heads observed is more than the number on the upperface of the die, equals
(A) $\frac{7}{9}$
(B) $\frac{79}{96}$
(C) $\frac{9}{73}$
(D) $\frac{7}{73}$
12. Let $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} be i.i.d.r.vs with pmf

$$
P(K)=\left(\frac{4}{5}\right)^{K-1}\left(\frac{1}{5}\right) ; \quad K=1,2,3, \ldots
$$

Let $y=x_{1}+x_{2}+x_{3}$. Then $P(y \geq 5)$ equals
(A) $\frac{17}{625}$
(B) $\frac{608}{625}$
(C) $\frac{17}{125}$
(D) $\frac{108}{125}$
13. Let x and y be continuous random variables with the joint pdf

$$
f(x, y)=\left\{\begin{array}{cc}
C x^{2}(1-x), & \text { if } 0<x<y<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

where C is a positive real constant. Then $E(x)$ equals
(A) $\frac{1}{5}$
(B) $\frac{1}{4}$
(C) $\frac{1}{3}$
(D) $\frac{1}{2}$
14. Let x and y be continous random variables with the joint pdf

$$
f(x, y)=\left\{\begin{array}{cc}
x+y, & \text { if } 0<x<1,0<y<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Then $P\left(x+y>\frac{1}{4}\right)$ equals
(A) $\frac{1}{192}$
(B) $\frac{95}{96}$
(C) $\frac{191}{192}$
(D) $\frac{1}{96}$
15. Let x be a standard normal random variable. Then $P\left(x^{2}-5 x+6>0\right)$ is
(A) $\Phi(2)+\Phi(3)$
(B) $\Phi(2)+\Phi(-3)$
(C) $\Phi(-2)+\Phi(3)$
(D) $\Phi(-2)+\Phi(-3)$
16. Let x, y be random variables having the joint pdf given by

$$
f(x, y)=\left\{\begin{array}{lc}
\frac{1}{y}, & \text { if } 0<y \leq 1,0<x \leq y \\
0, & \text { otherwise }
\end{array}\right.
$$

Then the corelation coefficient of x, y is given by
(A) $\sqrt{\frac{7}{12}}$
(B) $\sqrt{\frac{12}{7}}$
(C) $\sqrt{\frac{12}{5}}$
(D) $\sqrt{\frac{5}{12}}$
17. Let $x_{1}, x_{2}, \ldots, x_{n}$ be i.i.d. with following PMF

$$
P_{x}(k)=\left\{\begin{array}{cc}
0.75 & k=2 \\
0.25 & k=-2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Let $y=\sum_{i=1}^{n} x_{i}$, then an estimate of $P(0 \leq y \leq 2 n)$ using CLT is
(A) $\Phi(0.34)$
(B) $1-2 \Phi(0.34)$
(C) $2 \Phi(0.34)-1$
(D) $\Phi(0.34)+\Phi(0.66)$
18. Let $x_{1}, x_{2}, x_{3}, \ldots, x_{5}$ be a random sample from a geometric distribution with parameter θ, unknown. Then find the MLE of θ based on the random sample. Given that $x_{k}=k^{2} 1 \leq k \leq 5$ is
(A) 0.1
(B) 0.091
(C) 0.111
(D) 0.222
19. A random sample $x_{1}, x_{2}, \ldots, x_{121}$ is given from a distribution with known variance $\operatorname{var}\left(x_{i}\right)=25$. Let the sample mean by $\bar{x}=12.83$. Then the upper limit of a 99% confidence interval for $\theta=\mathrm{E}(\mathrm{x})$ is [Assume $\left.\Phi^{-1}(0.995)=2.574\right]$
(A) 14
(B) 15
(C) 16
(D) 18
20. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a random sample from a Geometric distribution with parameter $\theta(>0)$, where $\theta>0$ is unknown. The Cramer-Rao lower bound for the variance of any unbiased estimator of θ is
(A) $\frac{\theta^{2}}{n}$
(B) $\frac{1-\theta}{n}$
(C) $\frac{\theta^{2}(1-\theta)}{n}$
(D) $\frac{\theta}{n}$
21. If $\int_{y=0}^{1} \int_{x=y}^{2-\sqrt{1-(y-1)^{2}}} f(x, y) d x d y=\int_{x=0}^{1} \int_{y=0}^{\alpha(x)} f(x, y) d y d x+\int_{x=1}^{2} \int_{y=0}^{\beta(x)} f(x, y) d y d x$
then $[\beta(x)-1]^{2}+[\alpha(x)-2]^{2}$ equals
(A) x
(B) 1
(C) $1-\sqrt{1-(x-2)^{2}}$
(D) $x-1$
22. Let $f:[0,1] \rightarrow R$ be a function defined as

$$
f(t)=\left\{\begin{array}{cc}
\ln (1+2 t) \cdot \frac{\sin t^{3}}{t^{2}}, & t \neq 0 \\
2, & \text { otherwise. }
\end{array}\right.
$$

Let $F:[0,1] \rightarrow R$ be defined as

$$
F(x)=\int_{0}^{x} f(t) d t
$$

Then F"(0) equals
(A) 0
(B) 2
(C) $\frac{1}{2}$
(D) -2
23. Let x, y and z are real numbers such that $2 x+3 y+4 z=12$ and $x+3 y-z=15$. Then the value of $x+2 y+z$ equals.
(A) cannot be computed from the given information.
(B) equals 9
(C) equals $\frac{26}{3}$
(D) equals $\frac{25}{3}$
24. Let $M=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & -3\end{array}\right]$. If

$$
V=\left\{(x, y, 0) \in R^{3}: M\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\} \text { then the dimension of } V \text { is }
$$

(A) 0
(B) 1
(C) 2
(D) 3
25. Let M be a 3×3 non-zero, skew-Hermitian real matrix, I is the 3×3 identity matrix then,
(A) M is invertible.
(B) the matrix $I+M$ is invertible.
(C) $\alpha I+M$ is not invertible for some $\alpha \in R \backslash\{0\}$.
(D) Eigen values of M are imaginary.
26. Let the sequence $\left\{u_{n}\right\}_{n \geq 1}$ be defined by

$$
u_{n}=\frac{\left(1+\frac{C}{n}\right)^{n^{2}}}{\left(5-\frac{2}{n}\right)^{n}}, C \in R
$$

Then the values of C for which the series $\sum_{n=1}^{\infty} u_{n}$ converges are
(A) $\log _{e} 5<C<\log _{e} 10$
(B) $C>\log _{e} 10$
(C) $C<\log _{e} 5$
(D) $0<C<\log _{e} 10$
27. If for a suitable $\alpha>0$,

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\ln (1+5 x)}-\frac{1}{\alpha x}\right)
$$

exists and is equal to $\ell(|\ell|<\infty)$, then
(A) $\alpha=5, \ell=2$
(B) $\alpha=\frac{1}{5}, \ell=\frac{1}{2}$
(C) $\alpha=\frac{1}{5}, \ell=5$
(D) $\alpha=5, \ell=\frac{1}{2}$
28. Let Q, A, B be matrices of order $n \times n$ real entries such that Q is orthogonal and A is invertible. Then the eigenvalues of $Q^{\top} A^{-1} B Q$ are always the same as those of
(A) AB
(B) $Q^{\top} A^{-1} B$
(C) $\mathrm{A}^{-1} \mathrm{BQ}^{\top}$
(D) BA^{-1}
29. Let $y(x)$ be the solution to the differential equation

$$
x^{4} \frac{d y}{d x}+4 x^{3} y-\cos x=0, y(\pi)=1, x>0
$$

Then $y\left(\frac{\pi}{2}\right)$ is
(A) $\frac{16\left(1+\pi^{4}\right)}{\pi^{4}}$
(B) $\frac{14\left(1+\pi^{4}\right)}{\pi^{4}}$
(C) $\frac{12\left(1+\pi^{4}\right)}{\pi^{4}}$
(D) $\frac{10\left(1+\pi^{4}\right)}{\pi^{4}}$
30. Let $y(x)$ be the solution to the differential equation

$$
4 \frac{d^{2} y}{d x^{2}}+20 \frac{d y}{d x}+25 y=0, y(0)=1, y^{\prime}(0)=-4
$$

Then $y(1)$ equals
(A) $-\frac{1}{2} e^{-5 / 2}$
(B) $-\frac{3}{2} e^{-5 / 2}$
(C) $-\frac{5}{2} e^{-5 / 2}$
(D) $-\frac{7}{2} e^{-5 / 2}$

SECTION-B (Q. 31-40): MULTIPLE SELECT QUESTIONs (MSQs)

31. The differential equations that satisfy $y_{1}=e^{-x} \sin (x), y_{2}=e^{-3 x}$ are
(A) $\frac{d^{3} y}{d x^{3}}+5 \frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}+6 y=0$
(B) $\frac{d^{3} y}{d x^{3}}+8 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=0$
(C) $\frac{d^{4} y}{d x^{4}}+4 \frac{d^{3} y}{d x^{3}}+3 \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-6 y=0$
(D) $\frac{d^{4} y}{d x^{4}}-4 \frac{d^{3} y}{d x^{3}}+3 \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+6 y=0$
32. Which of the following are true with respect to matrices
(A) A skew-symmetric matrix can be orthogonal.
(B) A symmetric matrix can be orthogonal.
(C) An orthogonal matrix can have a 0 eigen value.
(D) A symmetric matrix can have the expression $x^{3}+x^{2}-2$ as characteristic expression.
33. Which of the following are true in a probability space (Ω, F, P)
(A) $P(A)=0 \Rightarrow A=\phi$
(B) A and B are independent events $\Rightarrow A \cap B=\phi$
(C) $A=\Omega \Rightarrow P(A)=1$
(D) $A \subset B \Rightarrow P(A \mid B)=P(A) / P(B)$
34. Let x be a random variable such that $2 \leq x \leq 6$. Then an upper limit for $\operatorname{Var}(x)$ is
(A) 1
(B) 4
(C) 8
(D) 16
35. If $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ be a random sample, then
(A) \bar{x} is an unbiased estimator of $\theta=E(x)$
(B) x_{1} is an unbiased estimator of $\theta=E(x)$
(C) \bar{x} is more efficient among \bar{x} and $\frac{x_{1}+x_{2}}{2}$ for $\theta=E(x)$
(D) \bar{x} is a consistent estimator of $\theta=E(x)$
36. Let $f: R \rightarrow R, g: R \rightarrow R$, then which of the following is/are true.
(A) $g(x)=\sin f(x)+\sin f(-x)$ is even for all f.
(B) For all odd functions $f, g(x)=\sin f(x)+\sin f(-x)$ is an even function.
(C) $g(x)=f(x)[f(x)+f(-x)]$ is even if f is even.
(D) $g(x)=f(\sin x)+f(\cos x)$ is odd if f is even.
37. The function $y=x(x-1)^{2}, 0 \leq x \leq 2$, has
$\begin{array}{ll}\text { (A) } y \text { has a global maximum at } x=\frac{1}{3} . & \text { (B) } y \text { has a global minimum at } x=1 . \\ \text { (C) } y \text { has a local maximum at } x=\frac{1}{3} . & \text { (D) } y \text { has a local minimum at } x=1 .\end{array}$
38. Let the pdf of a random variable x be given by
$f(x)=C_{1} x^{C_{2}}(1-x)^{C_{3}} x_{(0,1)}(x),-\infty<x<\infty$
If $E(x)=\frac{2}{5}$ and $\operatorname{Var}(x)=\frac{6}{275}$, then
(A) $C_{1}=105$
(B) $\mathrm{C}_{2}=3$
(C) $\mathrm{C}_{3}=4$
(D) $\mathrm{C}_{3}=5$
39. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{X}_{4}$ be random samples of size 4 from a standard normal distribution. Then
(A) $x_{1}^{2} \sim x^{2}(1)$
(B) $\frac{x_{1}}{\sqrt{x_{2}^{2}}} \sim t(1)$
(C) $\frac{x_{1}-x_{2}+x_{3}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}}}$ has expectation 0
(D) $x_{1}-x_{2}+x_{3} \sim N(0,1)$
40. Let x be a random variable with mean 2. Let $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ be unbiased estimators of the second and third moments respectively of x about origin. Then
(A) Unbiased estimator for second moment about mean is $\hat{\theta}_{1}-4$.
(B) $\hat{\theta}_{1}+4$ is an unbiased estimator for second moment about mean.
(C) Unbiased estimator for third moment about mean is $\hat{\theta}_{2}-6 \hat{\theta}_{1}+16$.
(D) $\hat{\theta}_{2}-6 \hat{\theta}_{1}$ is an estimator of third moment about mean.

SECTION-C (Q. 41-60): NUMERICAL ANSWER TYPE (NATs)

41. Let the random variable x have uniform distribution on the interval $(0,1)$ and $y=e^{-x}$. Then $E(y)$ equals \qquad .
42. If $y=\log _{10} x$ has $N\left(\mu, \sigma^{2}\right)$ distribution with MGF $M_{y}(t)=e^{2 t+2 t^{2}}, t \in(-\infty, \infty)$, then $P(x<100)$ equals \qquad .
43. Two events A and B have probabilities 0.26 and 0.54 respectively. The probability that both A and B occur simultaneously is 0.2 . The probability that neither A nor B occur is \qquad .
44. Consider the linear transformation

$$
T(x, y, z)=(x+y+z, 2 x+y-3 z, 3 x+2 y-2 z)
$$

Then rank of T is \qquad .
45. Consider the differentiable function $f: R \rightarrow R$ with derivative $f^{\prime}(x)=\frac{2 \tan x}{1-\tan ^{2} x}$. The arc length of the curve $y=f(x), \frac{\pi}{12} \leq x \leq \frac{\pi}{6}$ is \qquad .
46. Let x and y be discrete random variables with joint $p m f$

$$
P(x, y)=\frac{1}{25}\left(x^{2}+y^{2}\right) \quad \text { if } x=1,2 ; y=0,1,2
$$

Then $P(y=0 \mid x=2)$ equals \qquad .
47. The area bounded by the parabola $y=x^{2}+4, y=0, x=0$ and $x=3$ is \qquad .
48. Let x be a continuous random variable with the $p d f$

$$
f(x)=\left\{\begin{array}{cc}
\frac{3 x^{2}}{125}, & 0<x<5 \\
0, & \text { otherwise }
\end{array}\right.
$$

Then the upper bound of $P(|x-3|>\sqrt{3})$ using chebyshev's inequality is \qquad .
49. Let $[x]$ be the greatest integer less than or equal to x. Then $\int_{-2}^{1}[x]^{2} d x=$ \qquad .
50. Let x be a random variable with density $f(x)=\frac{1}{4} e^{-|x| / 2},-\infty<x<\infty$. Then $E\left(|x|^{3}\right)=$ \qquad .
51. Based on 10 observations $\left(x_{i}, y_{i}\right) ; i=1,2, \ldots, 10$, the following are obtained. $\sum_{i=1}^{10} x_{i}=30, \sum_{i=1}^{10} y_{i}=50, \sum_{i=1}^{10} x_{i} y_{i}=160, \sum_{i=1}^{10} x_{i}^{2}=110$. For $x=5$, the predicted value of y based on a least squares fit of a linear regression model of y on x is \qquad .
52. Let $P=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 5\end{array}\right]$. Then the trace of P^{-1} is
53. The value of $\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \frac{d x}{e^{\sin x}+1}$ equals \qquad .
54. Let $x_{1}, x_{2}, \ldots, x_{8}$ be a random sample from a population with true mean μ and variance σ^{2}. Let two estimators of θ be

$$
\begin{aligned}
& \hat{\theta}_{1}=\frac{x_{1}+x_{8}}{2} \\
& \hat{\theta}_{2}=\frac{x_{1}+x_{8}}{4}+\frac{x_{2}+x_{3}+\ldots+x_{7}}{12}
\end{aligned}
$$

Then the relative efficiency e($\left.\hat{\theta}_{2}, \hat{\theta}_{1}\right)$ equals \qquad .
55. Let $x_{1}, x_{2}, \ldots, x_{20}$ be a random sample from a $N(12.37,99)$ population. Suppose $y_{1}=\frac{1}{11} \sum_{i=1}^{11} x_{i}$ and $y_{2}=\frac{1}{9} \sum_{i=12}^{20} x_{i}$. If $\frac{\left(y_{1}-y_{2}\right)^{2}}{\alpha}$ has a x_{1}^{2} distribution, then $\alpha=$ \qquad .
56. Let x be a single observation taken from a normal population with unknown mean μ and known variance 0.2. The fischer information in x about μ is \qquad .
57. The probability density function of a random variable x is given by

$$
f(x)= \begin{cases}\frac{1}{4}, & \text { if }|x| \leq 1 \\ \frac{1}{4 \mathrm{x}^{2}}, & \text { otherwise }\end{cases}
$$

then $\mathrm{P}(0 \leq \mathrm{x} \leq 4)=$ \qquad .
58. Let a unit vector $v=\left(\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right)^{\top}$ be such that $A v=0$ where

$$
A=\left(\begin{array}{ccc}
5 & -2 & -1 \\
-1 & 1 & -1 \\
-1 & -2 & 5
\end{array}\right)
$$

then $\frac{\left|v_{2}\right|^{2}-\left|v_{3}\right|^{2}}{\left|v_{1}^{2}\right|}$ equals \qquad .
59. A tangent is drawn on the curve $y=\frac{2}{5} \sqrt{x^{5}},(x>0)$ at the point $P\left(1, \frac{2}{5}\right)$ which meets the x-axis at Q. Then the length of the closed curve OQPO, where O is the origin, is \qquad .
60. Let $y(x)$ be the solution of the differential equation

$$
x^{5} \frac{d y}{d x}+5 x^{4} y+e^{-x}=0
$$

satisfying the condition $y(1)=0$, then $\frac{1}{e^{2}} \frac{y(-1)}{y(3)}=$ \qquad .

FMTP

Ques	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Ans	A	B	C	C	D	C	B	A	D	C
Ques	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans	B	B	D	C	B	B	C	B	A	C
Ques	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$
Ans	B	A	B	A	B	C	D	D	A	A
Ques	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$
Ans	A, C	A, B	C, D	$\mathrm{B}, \mathrm{C}, \mathrm{D}$	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	$\mathrm{B}, \mathrm{C}, \mathrm{D}$	$\mathrm{A}, \mathrm{B}, \mathrm{D}$	$\mathrm{A}, \mathrm{B}, \mathrm{C}$	$\mathrm{A}, \mathrm{C}, \mathrm{D}$
Ques	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$
Ans	0.63	0.5	0.4	2	0.167	0.24	21	2	5	48
Ques	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$
Ans	6	1.4	0.5	3	20	5	0.4375	3	2.24	243

HINTS \& SOLUTION

$$
\begin{aligned}
& \text { Sol.(1) (A) } {\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
2 & 5 & 4 & 2 \\
3 & 6 & 6 & 4 \\
1 & 8 & 3 & 0
\end{array}\right] \xrightarrow{\substack{R_{3} \rightarrow R_{3}-3 R_{1} \\
R_{4} \rightarrow R_{4}-R_{1}}}\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
0 & 1 & -2 & 4 \\
0 & 0 & -3 & 8 \\
0 & 6 & 0 & 1
\end{array}\right] \xrightarrow{R_{4} \rightarrow R_{4}-6 R_{2}} } \\
& {\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
0 & 1 & -2 & 4 \\
0 & 0 & -3 & 8 \\
0 & 0 & 12 & -23
\end{array}\right] \xrightarrow{R_{4} \rightarrow R_{4}+4 R_{3}}\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
0 & 1 & -2 & 4 \\
0 & 0 & -3 & 8 \\
0 & 0 & 0 & 9
\end{array}\right] } \\
& \therefore \text { rank of } P=4
\end{aligned}
$$

Sol.(2) (B) For option B, $T(u+v)=T\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right)$

$$
\begin{aligned}
& =\left(u_{1}+v_{1}+u_{2}+v_{2}, 2 u_{3}+2 v_{3}+1\right) \\
& T u+T v=\left(u_{1}+v_{2}, 2 u_{3}+1\right)+\left(v_{1}+v_{2}, 2 v_{3}+1\right)=\left(u_{1}+v_{1}+u_{2}+v_{2}, 2 u_{3}+2 v_{3}+2\right) \\
& \neq T(u+v)
\end{aligned}
$$

Sol.(3) (C) By the Bolzano-Weistrass theorem all subsequences of a monotone bounded sequence converge to the same limit.

Sol.(4) (C)

The function between $[-1,1]$ is not one-one. It takes 0 at 3 different points.
So, its onto but not one-one.
Sol.(5) (D) $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{1}{4} \quad \Rightarrow \lim _{n \rightarrow \infty} a_{n}=0$
$\Rightarrow \lim _{n \rightarrow \infty} \frac{e^{a_{n}^{2}}+a_{n}^{3}}{\log \left(e+a_{n}\right)}=\frac{e^{0^{2}}+0^{3}}{\log (e+0)}=\frac{1}{1}=1$
Sol.(6) (C) $P\left(E \cap\left(E \cup F^{C}\right)\right)=P\left((F \cap E) \cup\left(F \cap F^{C}\right)\right)=P(F \cap E)=P(E)-P\left(E \cap F^{C}\right)$
$=0.5-0.4=0.1$
$\therefore P\left(F \mid E \cup F^{C}\right)=\frac{P\left(F \cap\left(E \cup F^{C}\right)\right)}{P\left(E \cup F^{C}\right)}=\frac{0.1}{0.6+0.6-0.4}=\frac{1}{8}$
Sol.(7) (B) Normal distribution pdf is
$f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \cdot e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
Comparing we get

$$
\begin{gathered}
\mu=0, \quad 2 \sigma^{2}=1 \\
\Rightarrow \sigma=\frac{1}{\sqrt{2}} \\
\sigma^{2}=E\left(x^{2}\right)-E(x)^{2} \\
\Rightarrow E\left(x^{2}\right)=\sigma^{2}+\mu^{2}=\frac{1}{2}+0=\frac{1}{2}
\end{gathered}
$$

Sol.(8) (A) Let $\operatorname{Var}(x)=\sigma^{2}$
$\operatorname{Var}\left(\frac{x_{1}+2 x_{2}+x_{3}}{4}\right)=\sigma^{2}\left(\frac{1+4+1}{16}\right)=\frac{3 \sigma^{2}}{8}=0.375 \sigma^{2}$
$\operatorname{Var}\left(\frac{x_{1}+x_{2}+3 x_{3}}{5}\right)=\frac{11 \sigma^{2}}{25}=0.44 \sigma^{2}$
$\operatorname{Var}\left(\frac{\mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3}}{6}\right)=\frac{7 \sigma^{2}}{18}=0.389 \sigma^{2}$
$\operatorname{Var}\left(\frac{2 x_{1}+3 x_{2}+4 x_{3}}{9}\right)=\frac{29 \sigma^{2}}{81}=0.358 \sigma^{2}$
Sol.(9) (D) $P(\cos x>\sin x)=P(\operatorname{Tan} x<1)=P\left(0<x<\frac{\pi}{4}\right)=\frac{\pi / 4-0}{\pi / 3-0}=\frac{3}{4}$
Sol.(10) (C) $\lim _{n \rightarrow \infty} P\left(\left|x_{n}-0\right| \geq \varepsilon\right)=\lim _{n \rightarrow \infty} P\left(x_{n} \geq \varepsilon\right)=\lim _{n \rightarrow \infty} e^{-n \varepsilon}=0$
Sol.(11) (B) 5 heads \rightarrow numbers : 1, 2, 3, $4 \quad P=\left(\frac{1}{2}\right)^{5} \times \frac{4}{6}=\frac{1}{8} \times \frac{1}{3}=\frac{1}{24}$
4 heads \rightarrow numbers: 1, 2, 3

$$
P=\left(\frac{1}{2}\right)^{4} \times 5 \times \frac{3}{6}=\frac{5}{32}
$$

3 heads \rightarrow numbers: 1, 2

$$
P=\left(\frac{1}{2}\right)^{3} \times 10 \times \frac{2}{6}=\frac{5}{12}
$$

2 heads \rightarrow numbers: 1

$$
P=\left(\frac{1}{2}\right)^{2} \times 5 \times \frac{1}{6}=\frac{5}{24}
$$

$\therefore \mathrm{P}_{\text {tot }}=\frac{79}{96}$
Sol.(12) (B) $P(y \geq 5)=1-P(y<5)=1-P\left(x_{1}+x_{2}+x_{3}<5\right)=1-P\left(x_{1}+x_{2}+x_{3} \leq 4\right)$

$$
\begin{aligned}
& =1-\left[P\left(x_{1}=1, x_{2}=1, x_{3}=1\right)+3 P\left(x_{1}=1, x_{2}=1, x_{3}=2\right)\right] \\
& =1-\left[\left(\frac{1}{5}\right)^{3}+3\left(\frac{1}{5}\right)^{3} \cdot \frac{4}{5}\right]=1-\left[\left(\frac{1}{5}\right)^{3} \cdot \frac{17}{5}\right]=1-\frac{17}{625}=\frac{608}{625}
\end{aligned}
$$

Sol.(13) (D) $\iint_{R^{2}} f(x, y) d y d x=1$

$$
\begin{aligned}
& \Rightarrow \int_{0}^{1} \int_{x}^{1} C \cdot x^{2}(1-x) d y d x=1 \\
& \Rightarrow C \int_{0}^{1} x^{2}(1-x)^{2} d x=1 \\
& \Rightarrow C\left[\int_{0}^{1} x^{2} d x-\int_{0}^{1} 2 x^{3} d x+\int_{0}^{1} x^{4} d x\right]=1 \\
& \Rightarrow C\left[\frac{1}{3}-\frac{1}{2}+\frac{1}{5}\right]=1
\end{aligned}
$$

$\Rightarrow C\left[\frac{16-15}{30}\right]=1$
$\Rightarrow C=30$
$E(x)=\iint x f(x, y) d y d x=30 \int_{0}^{1}\left(\int_{x}^{1} x^{3}(1-x) d y\right) d x=30 \int_{0}^{1}\left[x^{3}(1-x)^{2}\right] d x$
$=30\left[\int_{0}^{1} x^{3} \mathrm{~d} x-2 \int_{0}^{1} x^{4} d x+\int_{0}^{1} x^{5} d x\right]=30\left[\frac{1}{4}-\frac{2}{5}+\frac{1}{6}\right]=30\left[\frac{1}{60}\right]=\frac{1}{2}$
Sol.(14) (C) $P\left(x+y>\frac{1}{4}\right)=1-P\left(x+y \leq \frac{1}{4}\right)$
$P\left(x+y \leq \frac{1}{4}\right)=\int_{0}^{1 / 4} \int_{0}^{1 / 4-y}(x+y) d x d y=\int_{0}^{1 / 4}\left[\left(\frac{1}{4}-y\right)^{2} \cdot \frac{1}{2}+y\left(\frac{1}{4}-y\right)\right] d y$
$=\frac{1}{2} \int_{0}^{1 / 4}\left[\left(\frac{1}{4}-y\right)^{2}+2 y\left(\frac{1}{4}-y\right)\right] d y=\frac{1}{2}\left[\int_{0}^{1 / 4}\left(\frac{1}{16}-y^{2}\right) d y\right]=\frac{1}{2}\left[\frac{1}{16} \cdot \frac{1}{4}-\frac{1}{3} \cdot\left(\frac{1}{64}\right)\right]$
$=\frac{1}{2} \cdot \frac{1}{64} \cdot \frac{2}{3}=\frac{1}{192}$
$P\left(x+y>\frac{1}{4}\right)=1-P\left(x+y \leq \frac{1}{4}\right)=\frac{191}{192}$
Sol.(15) (B) $P\left(x^{2}-5 x+6>0\right)=P[(x-2)(x-3)>0]=1-P[(x-2)(x-3) \leq 0]$
$=1-\mathrm{P}(2 \leq \mathrm{x} \leq 3)=1-[\Phi(3)-\Phi(-2)]=1-\Phi(3)+\Phi(2)]=1-\Phi(3)+\Phi(2)$
$=\Phi(-3)+\Phi(2)$
Sol.(16) (B) $E(x)=\int_{0}^{1} \int_{0}^{y} x \cdot \frac{1}{y} d x d y=\int_{0}^{1} \frac{1}{y} \cdot \frac{y^{2}}{2} d y=\int_{0}^{1} \frac{y}{2} d y=\frac{1}{4}$

$E(y)=\int_{0}^{1} \int_{x}^{1} y \cdot \frac{1}{x} d y d x=\frac{1}{2}$

$$
\begin{aligned}
& E(x y)=\int_{0}^{1} \int_{0}^{y}(x y) \cdot \frac{1}{y} d x d y=\frac{1}{6} \\
& E\left(x^{2}\right)=\int_{0}^{1} \int_{0}^{y} x^{2} \cdot \frac{1}{y} d x d y=\frac{1}{9} \\
& E\left(y^{2}\right)=\int_{0}^{1} \int_{0}^{y} x^{2} \cdot \frac{1}{x} d x d y=\int_{0}^{1}\left(-x^{2}\right) d x=\frac{1}{3} \\
& \operatorname{cov}(x, y)=\frac{1}{6}-\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{12} \\
& \operatorname{Var}(x)=\frac{1}{9}-\frac{1}{16}=\frac{7}{144}, \operatorname{Var}(y)=\frac{1}{3}-\frac{1}{4}=\frac{1}{12} \\
& \therefore \rho(x, y)=\sqrt{\frac{12}{7}}
\end{aligned}
$$

Sol.(17) (C) $E\left(x_{i}\right)=(0.75)(2)+(0.25)(-2)=(0.5)(2)=1$

$$
\begin{aligned}
& E\left(x_{i}^{2}\right)=(0.75)(4)+(0.25) 4=4 \\
& \therefore \operatorname{var}\left(x_{i}\right)=4-1=3 \\
& E(y)=\sum_{i=1}^{n} E\left(x_{i}\right)=n \\
& \operatorname{var}(y)=\sum_{i=1}^{n} \operatorname{var}\left(x_{i}\right)=3 n \\
& P(0 \leq y \leq 2 n)=P(-n \leq y-n \leq n)=P\left(-\frac{1}{3} \leq \frac{y-n}{3} \leq \frac{1}{3}\right)=2 \Phi(0.34)-1
\end{aligned}
$$

Sol.(18) (B) $X_{i} \sim \operatorname{Geom}(\theta)$. Then

$$
\begin{aligned}
& (x ; \theta)=(1-\theta)^{x-1} \theta \\
& \Rightarrow L\left(x_{1}, x_{2}, \ldots, x_{5} ; \theta\right)=(1-\theta)^{\sum_{i=1}^{5} x_{i}-5} \theta^{5} \\
& \ln L=\left(\sum_{i=1}^{5} x_{i}-5\right) \ln (1-\theta)+5 \ln \theta \\
& \frac{1}{L} \frac{\partial L}{\partial \theta}=-\frac{\sum_{i=1}^{5} x_{i}-5}{1-\theta}+\frac{5}{\theta}
\end{aligned}
$$

$$
\sum_{i=1}^{5} x_{i}=\frac{5 \times 6 \times 11}{6}=55
$$

$$
=-\frac{50}{1-\theta}+\frac{5}{\theta}
$$

$$
\frac{\partial \mathrm{L}}{\partial \theta}=0 \Rightarrow \frac{50}{1-\theta}=\frac{5}{\theta} \quad \Rightarrow 10 \theta=1-\theta
$$

$$
\begin{aligned}
& \Rightarrow 11 \theta=1 \\
& \Rightarrow \theta=\frac{1}{11}=0.091
\end{aligned}
$$

Sol.(19) (A) The approximate $(1-\alpha) 100 \%$ confidence interval is given by

$$
\left[\overline{\mathrm{x}}-\mathrm{z}_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{\mathrm{n}}}, \overline{\mathrm{x}}+\mathrm{z}_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{\mathrm{n}}}\right]
$$

here

$$
\alpha=0.01, z_{\alpha / 2}=z_{0.005}=\Phi^{-1}(0.995)=2.574
$$

given $\quad \sigma^{2}=25 \quad \Rightarrow \sigma=5$
Upper limit of confidence interval is

$$
\bar{x}+z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}=12.83+2.574 \times \frac{5}{11}=12.83+1.17=14
$$

Sol.(20) (C) $P(x)=\left\{\begin{array}{cl}\theta(1-\theta)^{x-1}, & \text { if } x=1,2, \ldots \\ 0, & \text { otherwise. }\end{array}\right.$
$\frac{\partial}{\partial \theta} \ln P(x)=\frac{1}{\theta}+\frac{x-1}{\theta-1}$

$$
\begin{aligned}
\text { lower bound } & =\frac{1}{\mathrm{nE}\left[\left\{\frac{\partial \ln P(x)}{\partial \theta}\right\}^{2}\right]}=\frac{1}{\mathrm{nVar}\left[\frac{\partial}{\partial \theta} \ln P(x)\right]}=\frac{(\theta-1)^{2}}{\mathrm{nV} \operatorname{Var}(x-1)}=\frac{(\theta-1)^{2}}{\mathrm{n} \cdot \frac{(1-\theta)}{\theta^{2}}} \\
& =\frac{\theta^{2}(1-\theta)}{\mathrm{n}}
\end{aligned}
$$

Sol.(21) (B) Change of variable order of integration

$x: 0 \rightarrow 1 \Rightarrow y: 0 \rightarrow x$
$\therefore \alpha(\mathrm{x})=\mathrm{x}$

$$
\begin{aligned}
& x: 1 \rightarrow 2 \Rightarrow y: 0 \rightarrow 1+\sqrt{1-(x-2)^{2}} \\
& \therefore \beta(x)=1+\sqrt{1-(x-2)^{2}} \\
& \therefore[\alpha(x)-2]^{2}+[\beta(x)-1]^{2}=1
\end{aligned}
$$

Sol.(22) (A) $F^{\prime}(x)=f(x)$ by Fundamental theorem

$$
F^{\prime \prime}(0)=f^{\prime}(0)=\lim _{t \rightarrow 0} \frac{f(t)-f(0)}{t-0}=\lim _{t \rightarrow 0} \frac{\ln (1+2 t) \cdot \frac{\sin t^{3}}{t^{2}}}{t}=\lim _{t \rightarrow 0} \ln (1+2 t) \cdot \frac{\sin \left(t^{3}\right)}{t^{3}}=0
$$

Sol.(23) (B) $x+2 y+z=\frac{1}{3}[3 x+6 y+3 z]=\frac{1}{3}[2 x+3 y+4 z+x+3 y-z]=\frac{1}{3}[12+15]$ $=9$
Sol.(24) (A) $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & -3\end{array}\right]\left[\begin{array}{l}x \\ y \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

$$
\left.\Rightarrow \begin{array}{l}
x+2 y=0 \\
8 x+y=0
\end{array}\right\} \quad \Rightarrow x=0, y=0
$$

$$
\therefore \quad V=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\therefore \quad \operatorname{dim}(\mathrm{V})=0
$$

Sol.(25) (B) A real Skew-Hermetian matrix is same as a skew symmetric matrix.
M is not invertible as eigenvalues must have 0 .
So eigenvalues are not all imaginary.
$|\lambda I+M|=0$ gives either $\lambda=0$ or λ is imaginary.
$\therefore \nexists \alpha \in \mathrm{R} \mid\{0\}$ such that $|\alpha \mathrm{I}+\mathrm{M}|=0$
$\therefore \mathrm{I}+\mathrm{M}$ is invertible.
Sol.(26) (C) Root test: $\lim _{n \rightarrow \infty} u_{n}^{1 / n}=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{C}{n}\right)^{n}}{5-\frac{2}{n}}=\frac{e^{c}}{5}$
Convergence $\Rightarrow \frac{e^{C}}{5}<1 \quad \Rightarrow C<\log _{e} 5$

Sol.(27) (D) $\lim _{x \rightarrow 0}\left[\frac{\alpha x-\ln (1-5 x)}{\ln (1+5 x) . \alpha x}\right]=\frac{1}{\alpha} \lim _{x \rightarrow 0}\left[\frac{\alpha-\frac{\ln (1+5 x)}{x}}{\ln (1+5 x)}\right]$
the denominator goes to 0 , for the limit to exist, numerator should be 0 .

$$
\begin{aligned}
\alpha-\lim _{x \rightarrow 0} \frac{\ln (1+5 x)}{x}=0 & \Rightarrow \alpha-5=0 \\
& \Rightarrow \alpha=5
\end{aligned}
$$

$\Rightarrow \ell=\lim _{x \rightarrow 0}\left[\frac{5 x-\ln (1+5 x)}{5 x \ln (1+5 x)}\right]=\lim _{x \rightarrow 0}\left[\frac{5-\frac{1}{1+5 x} .5}{5\left[\ln (1+5 x)+\frac{5 x}{1+5 x}\right]}\right]$
$=\lim _{x \rightarrow 0}\left[\frac{1}{1.1(1+5 x) \frac{\ln (1+5 x)}{5 x}}\right]=\frac{1}{2}$
Sol.(28) (D) Similar matrices have same eigen values,
Q is orthogonal $\Rightarrow Q^{\top}=Q^{-1}$
$\therefore Q^{\top} A^{-1} B Q$ is similar to $A^{-1} B$
\therefore They have same eigen values,
$A B$ and $B A$ have same eigen values
$\Rightarrow A^{-1} B$ and $B A^{-1}$ have same eigen values.
Sol.(29) (A) $\frac{d}{d x}\left(x^{4} y\right)=\cos x$
$\Rightarrow x^{4} y=\sin x+C$
$\Rightarrow y=x^{-4} \sin x+C x^{-4}$
$y(\pi)=1 \quad \Rightarrow C=\pi^{4}$
$\therefore \mathrm{y}(\mathrm{x})=\frac{1}{\mathrm{x}^{4}}\left[\mathrm{x}^{4}+\sin \mathrm{x}\right]$
$y\left(\frac{\pi}{2}\right)=\frac{16}{\pi^{4}}\left(\pi^{4}+1\right)=\frac{16\left(1+\pi^{4}\right)}{\pi^{4}}$
Sol.(30) (A) AE is $\quad 4 m^{2}+20 m+25=0$
$\Rightarrow(2 m+5)^{2}=0$

$$
\begin{aligned}
& \quad \Rightarrow m=-\frac{5}{2},-\frac{5}{2} \\
& y(x)=C_{1} e^{-\frac{5}{2} x}+C_{2} x e^{-\frac{5}{2} x} \\
& y(0)=1 \quad \Rightarrow C_{1}=1 \\
& y^{\prime}(0)=-4 \Rightarrow-\frac{5}{2} C_{1}+C_{2}=-4 \\
& \quad \Rightarrow C_{2}=-4+\frac{5}{2}(1)=-\frac{3}{2} \\
& y(1)=C_{1} e^{-\frac{5}{2}}+C_{2} e^{-\frac{5}{2}}=e^{-\frac{5}{2}}\left(C_{1}+C_{2}\right)=-\frac{1}{2} e^{-5 / 2}
\end{aligned}
$$

Sol.(31) (A, C) $e^{-x} \sin (x)$ is a root $\Rightarrow e^{-x} \cos (x)$ is a root.
$\therefore-1+\mathrm{i},-1-\mathrm{i}$ are roots of auxilliary equation.
\therefore The auxilliary equation is

$$
\begin{aligned}
& \quad[m-(-1-i)][m-(-1+i)](m+3)=0 \\
\Rightarrow \quad & m^{3}+5 m^{2}+8 m+6=0 \\
\therefore & \text { D.E. is } \frac{d^{3} y}{d x^{3}}+5 \frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}+6 y=0
\end{aligned}
$$

for option C , the Auxilliary equation is
$m^{4}+4 m^{3}+3 m^{2}-2 m-6=(m-1)\left(m^{3}+5 m^{2}+8 m+6\right)$
$\therefore \mathrm{C}$ is also correct.
Sol.(32) (A, B) $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ is skew-symmetric and orthogonal.
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is symmetric and orthogonal.
An orthogonal matrix has determinant ± 1. So it must have all eigen values nonzero.
If $x^{3}+x^{2}-2$ is characteristic expression, then eigen values are $1,-1 \pm 2$. A skew symmetric matrix cannot have a real eigen value.
Sol.(33) (C, D) For a continuous distribution, the probability of discrete points is 0 . Independent events $\Leftrightarrow P(A \cap B)=P(A) \cdot P(B)$

$$
A \cap B=\phi \quad P P(A \cap B)=0
$$

but $P(A) \cdot P(B)$ need not be 0 .
$A=\Omega \quad \Rightarrow P(A)=1$
$A \subset B P A \cap B=A \quad \Rightarrow P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)}$

Sol.(34) (B, C, D) Define $y=x-4$,

$$
\begin{aligned}
2 \leq x \leq 6 & \Rightarrow-2 \leq y \leq 2 \\
& \Rightarrow y^{2} \leq 4
\end{aligned}
$$

$\operatorname{Var}(\mathrm{x})=\operatorname{Var}(\mathrm{y})$

$$
=E\left(y^{2}\right)-[E(y)]^{2}
$$

$$
\leq E\left(y^{2}\right)
$$

$$
\leq \mathrm{E}(4)
$$

$$
=4
$$

$\therefore \operatorname{Var}(\mathrm{x}) \leq 4$
Sol.(35) (A, B, C, D) $E(\bar{x})=\frac{1}{n} \sum_{i=1}^{n} E\left(x_{i}\right)=E(x)=\theta$
$\therefore \overline{\mathrm{x}}$ is unbiased.
$E\left(x_{1}\right)=E(x)=\theta$
$\therefore \mathrm{x}_{1}$ is unbiased.
$\operatorname{MSE}(\bar{x})=E[\bar{x}-E(\bar{x})]^{2}=\operatorname{Var}[\bar{x}-E(x)]+E[\bar{x}-E(x)]^{2}=\operatorname{Var}(\bar{x})=\frac{\sigma^{2}}{n}$
$\operatorname{MSE}\left(x_{1}\right)=\operatorname{Var}\left(x_{1}\right)=\sigma^{2}>\operatorname{MSE}(\bar{x})$
$\therefore \overline{\mathrm{x}}$ is more efficient.
By chebyshev's inequality
$\mathrm{P}[|\overline{\mathrm{x}}-\mathrm{E}(\mathrm{x})| \geq \varepsilon] \leq \frac{\operatorname{Var}(\overline{\mathrm{x}})}{\varepsilon^{2}}=\frac{\sigma^{2}}{\mathrm{n} \varepsilon^{2}}$
$\Rightarrow \lim _{n \rightarrow \infty} P[|\bar{x}-E(x)| \geq \varepsilon]=0$
$\Rightarrow \bar{x}$ is consistent.
Sol.(36) (A, B, C, D) (A) $g(-x)=\sin f(-x)+\sin f(x)=g(x)$
$\therefore \mathrm{g}$ is even for all f .
$(B) f$ is odd $\Rightarrow f(-x)=-f(x)$

$$
\Rightarrow g(x)=\sin f(x)-\sin f(x)=0
$$

$\therefore \mathrm{g}$ is a constant $\Rightarrow \mathrm{g}$ is both even and odd.
(C) $g(-x)=f(-x)[f(-x)+f(x)]=f(x)[f(-x)+f(x)]=g(x) \Rightarrow g(x)$ is even.
(D) $g(-x)=f[\sin (-x)]+f[\cos (-x)]=f(\sin x)+f(\cos x)=g(x)$
$\therefore \mathrm{g}$ is even.
Sol.(37)
$(B, C, D) \frac{d y}{d x}=(x-1)^{2}+2 x(x-1)=(x-1)(3 x-1)$
$\frac{d y}{d x}=0 \quad \Rightarrow x=1 \quad$ or $\quad x=\frac{1}{3}$
$\frac{d^{2} y}{d x^{2}}=3 x-1+x-1=4 x-2$
$x=1 \Rightarrow y^{\prime \prime}>0 \quad \Rightarrow y$ has a local minimum
$x=\frac{1}{3} \Rightarrow y^{\prime \prime}<0 \quad \Rightarrow y$ has a local maximum
at $x=0, y(x)=0$
at $x=\frac{1}{3}, y(x)=\frac{4}{27}$
at $x=1, y(x)=0 \Rightarrow x=1$ has a global minimum.
at $x=2, y(x)=2$
Sol.(38) (A, B, D) The distribution given is of Beta.

$$
\begin{aligned}
& f(x)=\frac{1}{\beta(a, b)} x^{a-1}(1-x)^{b-1} x_{(0,1)}{ }^{(x)} \\
& E(x)=\frac{a}{a+b}, \operatorname{Var}(x)=\frac{a b}{(a+b+1)(a+b)^{2}} \\
& \text { here } C_{1}=a-1, C_{2}=b-1
\end{aligned}
$$

$$
E(x)=\frac{2}{5} \Rightarrow \frac{a}{a+b}=\frac{2}{5} \quad \Rightarrow 3 a=2 b
$$

$$
\operatorname{Var}(x)=\frac{6}{275} \quad \Rightarrow \frac{a b}{(a+b+1)(a+b)^{2}}=\frac{6}{275}
$$

$$
\Rightarrow \frac{b}{(a+b+1)(a+b)} \cdot \frac{2}{5}=\frac{6}{275}
$$

$$
\Rightarrow \frac{b}{a(a+b+1)} \cdot \frac{4}{25}=\frac{6}{275}
$$

$$
\Rightarrow \frac{1}{a+b+1} \cdot \frac{3}{2} \cdot \frac{4}{25}=\frac{6}{275}
$$

$$
\Rightarrow a+b+1=11 \Rightarrow a+b=10
$$

$$
\Rightarrow a=4, b=6
$$

$$
\Rightarrow C_{2}=3, C_{3}=5
$$

$$
\Rightarrow C_{1}=\frac{1}{\beta(3,5)}=105
$$

Sol.(39) (A, B, C) A, B are by definition

$$
\begin{align*}
& x_{1}-x_{2}+x_{3} \sim N(0,3) \\
\Rightarrow \quad & \frac{x_{1}-x_{2}+x_{3}}{\sqrt{3}} \sim N(0,1) \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \sim x^{2}(4) \\
\Rightarrow \quad & \frac{2}{\sqrt{3}}\left(\frac{x_{1}-x_{2}+x_{3}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}}}\right) \sim t(4) \tag{4}\\
\Rightarrow \quad & E\left(\frac{x_{1}-x_{2}+x_{3}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}}}\right)=0
\end{align*}
$$

Sol.(40) (A, C, D) $E\left[(x-2)^{2}\right]=E\left(x^{2}-4 x+4\right)=E\left(x^{2}\right)-4 E(x)+4$
$=\hat{\theta}_{1}-4$ is an unbiased estimator.
$E\left[(x-2)^{3}\right]=E\left(x^{3}-6 x^{2}+12 x-8\right)=\hat{\theta}_{2}-6 \hat{\theta}_{1}+16$ is an unbiased estimator.
Sol.(41) 0.63

$$
\mathrm{E}(\mathrm{y})=\int_{-\infty}^{\infty} \mathrm{yf} \mathrm{f}_{\mathrm{x}}(\mathrm{x}) \mathrm{dx}=\int_{0}^{1} \mathrm{e}^{-\mathrm{x}} \cdot(1) \mathrm{dx}=\left[-\mathrm{e}^{-\mathrm{x}}\right]_{0}^{1}=1-\mathrm{e}^{-1}=0.63
$$

Sol.(42) 0.5

$M_{y}(t)=e^{2 t+2 t^{2}}$ is of normal distribution with $\mu=2, \frac{\sigma^{2}}{2}=2$
$\Rightarrow \quad \mu=2, \sigma^{2}=4$
$\mathrm{P}(\mathrm{x}<100)=\mathrm{P}\left(\log _{10} \mathrm{x}<2\right)=\mathrm{P}(\mathrm{y}<2)=\mathrm{P}\left(\frac{\mathrm{y}-2}{2}<0\right)=\Phi(0)=\frac{1}{2}=0.5$
Sol.(43) 0.4
$P(A)=0.26, P(B)=0.54, P(A \cap B)=0.2$
$P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.26+0.54-0.2=0.6$
$P\left(A^{C} \cap B^{C}\right)=1-P(A \cup B)=1-0.6=0.4$
Sol.(44) 2
Matrix of $T=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -3 \\ 3 & 2 & -2\end{array}\right] \xrightarrow{\begin{array}{l}R_{3} \rightarrow R_{3}-\left(R_{1}+R_{2}\right) \\ R_{2} \rightarrow R_{2}-2 R_{1}\end{array}}\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -1 & -5 \\ 0 & 0 & 0\end{array}\right]$
Rank $=2$
$f^{\prime}(x)=\frac{2 \tan x}{1-\tan ^{2} x}=\tan 2 x$
Length of $\operatorname{arc}=\int_{\pi / 12}^{\pi / 6} \sqrt{1+\tan ^{2} 2 x} d x=\int_{\pi / 12}^{\pi / 6} \sec 2 x d x=\frac{1}{2} \int_{\pi / 6}^{\pi / 3} \sec x d x$
$=\left.\frac{1}{2} \log (\sec x+\tan s)\right|_{\pi / 6} ^{\pi / 3}=\frac{1}{2}\left[\log (2+\sqrt{3})-109\left(\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}\right)\right]=\frac{1}{2}\left[\log \left(\frac{2+\sqrt{3}}{\sqrt{3}}\right)\right]$
$=0.167$

Sol.(46) 0.24

$$
\begin{aligned}
& P(y=0, x=2)=\frac{1}{25}(0+4)=\frac{4}{25} \\
& P(x=2)=P(x=2, y=0)+P(x=2, y=1)+P(x=2, y=2) \\
& =\frac{1}{25}(4+0)+\frac{1}{25}(4+1)+\frac{1}{25}(4+4)=\frac{1}{25}(17) \\
& P(y=0 \mid x=2)=\frac{P(x=2, y=0)}{P(x=2)}=\frac{4 / 25}{17 / 25}=\frac{4}{17}=0.24
\end{aligned}
$$

Sol.(47) 21

$$
\text { Area }=\int_{0}^{3}\left(x^{2}+4\right) d x=\frac{x^{3}}{3}+\left.4 x\right|_{0} ^{3}=9+12=21
$$

Sol.(48) 2

$$
\begin{aligned}
& E(x)=\int_{0}^{5} \frac{3 x^{3}}{125} d x=\frac{3}{5} \cdot \frac{5^{4}}{125}=3 \\
& E\left(x^{2}\right)=\int_{0}^{5} \frac{3 x^{4}}{125} d x=\frac{3}{5} \cdot \frac{5^{5}}{125}=15 \\
& \operatorname{Var}(x)=E\left(x^{2}\right)-[E(x)]^{2}=15-9=6 \\
& \therefore P(|x-3|>\sqrt{3}) \leq \frac{6}{3}=2
\end{aligned}
$$

Sol.(49) 5

$$
\begin{aligned}
& \int_{-2}^{1}[x]^{2} d x=\int_{-2}^{-1}[x]^{2} d x+\int_{-1}^{0}[x]^{2} d x+\int_{0}^{1}[x]^{2} d x=\int_{-2}^{-1}(-2)^{2} d x+\int_{-1}^{0}(-1)^{2} d x+\int_{0}^{1}(0)^{2} d x=4+1 \\
& =5
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}\left(|x|^{3}\right)=\frac{1}{4} \int_{-\infty}^{\infty}|x|^{3} \mathrm{e}^{-|x| / 2} \mathrm{dx}=\frac{1}{4} \cdot 2 \cdot \int_{0}^{\infty} \mathrm{x}^{3} \cdot \mathrm{e}^{-x / 2} \mathrm{dx}=\frac{1}{2} \cdot 16 \cdot \int_{0}^{\infty} \mathrm{t}^{3} \cdot \mathrm{e}^{-t} \mathrm{dt} \\
& =8 \cdot\left[\left(-\mathrm{t}^{3}-3 \mathrm{t}^{2}-6 \mathrm{t}-6\right) \mathrm{e}^{-\mathrm{t}}\right]_{0}^{\infty}=8 \cdot[6]=48
\end{aligned}
$$

Sol.(51) 6

Normal equation for a is

$$
\begin{aligned}
& \Sigma y=n a+b \Sigma x \\
\Rightarrow \quad & 50=10 a+30 b \\
\Rightarrow & 5=a+3 b
\end{aligned}
$$

Normal equation for b is

$$
\begin{aligned}
& \Sigma x y=a \Sigma x+b \Sigma x^{2} \\
\Rightarrow \quad & 160=30 a+110 b \\
\Rightarrow \quad & 16=3 \mathrm{a}+11 \mathrm{~b}
\end{aligned}
$$

Solving, we get $a=3.5, b=0.5$
$\therefore y=3.5+0.5 x$
for $x=5, y=3.5+(0.5) 5=6$

Sol.(52) 1.4

Characteristic equation of P is $|\lambda I-P|=0$
$\Rightarrow\left|\begin{array}{ccc}\lambda-1 & -2 & -3 \\ 0 & \lambda-1 & 1 \\ 0 & 0 & \lambda-5\end{array}\right|=0$
$\Rightarrow(\lambda-1)(\lambda-1)(\lambda-5)=0$
$\Rightarrow \lambda^{3}-7 \lambda^{2}+7 \lambda-5=0$
Characteristic equation of P^{-1} is obtained by replacing λ with $\frac{1}{\lambda}$
$\Rightarrow \frac{1}{\lambda^{3}}-\frac{7}{\lambda^{2}}+\frac{7}{\lambda}-5=0$
$\Rightarrow 5 \lambda^{3}-7 \lambda^{2}+7 \lambda-1=0$
trace of $\mathrm{P}^{-1}=\frac{7}{5}$
$\mathrm{I}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \frac{\mathrm{dx}}{e^{\sin x}+1}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \frac{d x}{e^{\sin \left(\frac{\pi}{2}-\frac{\pi}{2}-x\right)}+1}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \frac{d x}{e^{\sin (-x)}+1}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \frac{e^{\sin x}}{e^{\sin x}+1} d x$
$2 \mathrm{I}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \frac{\mathrm{dx}}{\mathrm{e}^{\sin \mathrm{x}}+1}+\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \frac{\mathrm{e}^{\sin x}}{\mathrm{e}^{\sin x}+1} \mathrm{dx}=\frac{1}{\pi}\left[\int_{-\pi / 2}^{\pi / 2} \frac{\mathrm{e}^{\sin x}+1}{\mathrm{e}^{\sin x}+1} \mathrm{dx}\right]=\frac{1}{\pi}[\pi]=1$
$\Rightarrow \mathrm{I}=\frac{1}{2}=0.5$
Sol.(54) 3
$E\left(\hat{\theta}_{1}\right)=E\left(\frac{x_{1}+x_{8}}{2}\right)=\mu$
$E\left(\hat{\theta}_{2}\right)=E\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{8}}{4}+\frac{\mathrm{x}_{2}+\mathrm{x}_{3}+\ldots+\mathrm{x}_{7}}{12}\right)=\mu$
\therefore Both $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ are unbiased.
$\operatorname{Var}\left(\hat{\theta}_{1}\right)=\frac{\sigma^{2}}{2}$
$\operatorname{Var}\left(\hat{\theta}_{2}\right)=\frac{1}{16}\left(2 \sigma^{2}\right)+\frac{1}{144}\left(6 \sigma^{2}\right)=\frac{\sigma^{2}}{6}$
$e\left(\hat{\theta}_{2}, \hat{\theta}_{1}\right)=\frac{\operatorname{Var}\left(\hat{\theta}_{1}\right)}{\operatorname{Var}\left(\hat{\theta}_{2}\right)}=\frac{\sigma^{2} / 2}{\sigma^{2} / 6}=3$

Sol.(55) 20

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)=\frac{1}{11}[11 \times 12.37]-\frac{1}{9}[9 \times 12.37]=0 \\
& \operatorname{Var}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)=\operatorname{Var}\left[\frac{1}{11} \sum_{\mathrm{i}=1}^{11} \mathrm{x}_{\mathrm{i}}-\frac{1}{9} \sum_{\mathrm{i}=12}^{20} \mathrm{x}_{\mathrm{i}}\right]=\frac{1}{121}\left[\sum_{\mathrm{i}=1}^{11} \operatorname{Var}\left(\mathrm{x}_{\mathrm{i}}\right)\right]+\frac{1}{81}\left[\sum_{\mathrm{i}=12}^{20} \operatorname{Var}\left(\mathrm{x}_{\mathrm{i}}\right)\right] \\
& =\frac{1}{121} \times 11 \times 99+\frac{1}{81} \times 9 \times 99=9+11=20 \\
& \therefore \frac{\left[\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)-0\right]^{2}}{20} \text { has } 0 \mathrm{x}_{1}^{2} \text { distribution. } \\
& \Rightarrow \alpha=20
\end{aligned}
$$

Sol.(56) 5

$$
\begin{aligned}
& x \sim N\left(\mu, \sigma^{2}\right) \\
& \Rightarrow f(x ; \mu)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

$\Rightarrow \ln [f(x ; \mu)]=-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{(x-\mu)^{2}}{2 \sigma^{2}}$
$\therefore \frac{\mathrm{d}}{\mathrm{d} \mu} \ln [\mathrm{f}(\mathrm{x} ; \mu)]=\frac{(\mathrm{x}-\mu)}{\sigma^{2}}$
$\Rightarrow \frac{\mathrm{d}^{2}}{\mathrm{~d} \mu^{2}} \ln [\mathrm{f}(\mathrm{x} ; \mu)]=\frac{-1}{\sigma^{2}}$
\therefore Fischer information $=-\int_{-\infty}^{\infty}-\frac{1}{\sigma^{2}} f(x ; \mu) \cdot d x=\frac{1}{\sigma^{2}}=\frac{1}{0.2}=5$
Sol.(57) 0.4375

$$
\begin{aligned}
& P(0 \leq x \leq 4)=\int_{0}^{4} f(x) d x=\int_{0}^{1} \frac{1}{4} d x+\int_{1}^{4} \frac{1}{4 x^{2}} d x=\frac{1}{4}+\frac{1}{4} \cdot\left[-\frac{1}{x}\right]_{1}^{4}=\frac{1}{4}+\frac{1}{4}\left[1-\frac{1}{4}\right] \\
& =\frac{1}{4}+\frac{1}{4} \cdot \frac{3}{4}=\frac{7}{16}=0.4375
\end{aligned}
$$

Sol.(58) 3

$$
A v=0
$$

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
5 & -2 & -1 \\
-1 & 1 & -1 \\
-1 & -2 & 5
\end{array}\right)
\end{aligned} \xrightarrow{R_{3} \rightarrow R_{3}+R_{1}+4 R_{2}}\left(\begin{array}{ccc}
5 & -2 & -1 \\
-1 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{R_{2} \rightarrow R_{1}+5 R_{2}}
$$

\therefore Unit vector is $\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$
$\frac{\left|\mathrm{v}_{2}\right|^{2}-\left|\mathrm{v}_{3}\right|^{2}}{\left|\mathrm{v}_{1}^{2}\right|}=\frac{\frac{4}{6}-\frac{1}{6}}{\frac{1}{6}}=3$

Sol.(59) 2.24

Slope of tangent at P is

$$
\frac{d y}{d x}=x^{3 / 2}
$$

at $\quad\left(1, \frac{2}{5}\right) \frac{d y}{d x}=1$
\therefore equation of tangent is

$$
\begin{aligned}
& y-\frac{2}{5}=1(x-1) \\
\Rightarrow \quad & x-y=\frac{3}{5}
\end{aligned}
$$

This meets x-axis at $Q\left(\frac{3}{5}, 0\right)$
Length of $\mathrm{OQ}=\frac{3}{5}, \mathrm{PQ}=\sqrt{\left(\frac{2}{5}\right)^{2}+\left(\frac{2}{5}\right)^{2}}=\frac{2}{5} \sqrt{2}$
$\mathrm{OP}=\sqrt{1^{2}+\left(\frac{2}{5}\right)^{2}}=\sqrt{\frac{29}{25}}=\frac{\sqrt{29}}{5}$
$\therefore \mathrm{OPQO}=\frac{3}{5}+\frac{\sqrt{29}}{5}+\frac{2 \sqrt{2}}{5}=2.24$

Sol.(60) 243

$$
\begin{aligned}
& x^{5} \frac{d y}{d x}+5 x^{4} y=-e^{-x} \\
& \Rightarrow \frac{d}{d x}\left(x^{5} \cdot y\right)=-e^{-x} \\
& \Rightarrow x^{5} y=e^{-x}+C \\
& \Rightarrow y=\frac{e^{-x}}{x^{5}}+\frac{C}{x^{5}} \\
& y(1)=0 \quad \Rightarrow e^{-1}+C=0 \\
& \quad \Rightarrow C=-e^{-1}
\end{aligned} \quad \begin{aligned}
& y(-1)=\frac{e-e^{-1}}{-1}=-\left[\frac{e^{2}-1}{e}\right] \\
& y(3)=\frac{e^{-3}-e^{-1}}{3^{5}}=\frac{e^{-3}\left[1-e^{2}\right]}{3^{5}} \\
& \therefore \frac{1}{e^{2}} \frac{y(-1)}{y(3)}=\frac{1}{e^{2}} \cdot \frac{1-e^{2}}{e} \cdot \frac{3^{5} \cdot e^{3}}{1-e^{2}}=243
\end{aligned}
$$

