

GATE SCIENCE MATHEMATICS SOLVED SAMPLE PAPER

* DETAILED SOLUTIONS

Web Site www.vpmclasses.com E-mail-vpmclasses@yahoo.com

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

VPM CLASSES

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

1. Let
$$f(x, y) = \begin{cases} \frac{x^2y^2}{(x+y)^2} \{1 + \log(1 - (x+y))\}, & (x,y) \neq (0,0) \\ k & , & (x,y) = (0,0) \end{cases}$$

Then the value of k for which f(x, y) is continuous at (0, 0) is _____.

- **2.** For what value of λ the following matrix have nullity 1?
 - (A) $\lambda \neq 2$
 - (B) $\lambda \neq 3$
 - (C) $\lambda = 4$
 - (D) for all λ
- If 3 × 3 is skew Hermitian matrix and if have an eigen value –2i then one of the remaining Eigen values is _____.
- 4. Consider the l.p.p. Max $z = 2x_1 4x_2$
 - s.t. $\begin{aligned} x_1 + 2x_2 &\leq 3\\ 3x_1 + 4x_2 &\leq 5 \end{aligned}$ and $0 &\leq x_1 \leq 5 \end{aligned}$

 $0 \leq x_2^{} \leq 5$

the total no. of extreme points is _____.

5. Let x^4 be an optimal solution to the l.p.p.

minimize $c^T x$

Subject to $Ax \ge b$

and $x \ge b$

which one of the following is true?

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

(A) The value of the objective function at a feasible solution to the dual L.P.P. is bounded above by $c^T x$.

(B) x is an extreme point of the feasible region

(C) The dual L.P.P. has an optimal solution with optimum value $c^{T}x$

(D) If a variable is zero in x then the corresponding constraint in the dual is satisfied as a strict inequality

6. The life time of two brands of bulbs X and Y are exponentially distributed with a mean life time of 100 hours. Bulb X is switched on 15 hours after bulb Y has been switched on. The probability that the bulb X fails before Y is

(A) $\frac{15}{100}$ (B) $\frac{1}{2}$ (C) $\frac{85}{100}$

(D) 0

- Consider the algebraic extension $E = Q(\sqrt[3]{2}, \sqrt[4]{3})$ of the field Q of rational numbers. Then [e : 7. Q] the degree of E over Q is _____.
- The general solution of the partial differential equation $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial v^2} = 12(x + y)$ 8.

(A)
$$(x + y)^2 + \phi(x + iy) + \phi_2(x - iy)$$

(B)
$$(x + y)^3 + \phi_1(y + ix) + \phi_2(y - ix)$$

(C)
$$(x + y)^3 + \phi_1(x + iy) + \phi_2(x - iy)$$

(D)
$$(x + y)2 + \phi_1(y + ix) + \phi_2(y - ix)$$

WhatsApp: 9001894070 Website: www.vpmclasses.com

9. The numerical value obtained by applying the two point trapezoidal rule to the integral $\int_0^{\frac{\pi}{2}} e^{\sin x} dx$ is

(A)
$$\frac{1+e}{2}$$

- (B) $\frac{1-e}{2}$
- (C) $\frac{1}{2}$

(D)
$$\frac{e-1}{2}$$

- **10.** Let f(x) be continuous whose values are known at -2, -1, 1, 2 if the Lagrange's interpolation formula $f(x) = L_1 f(-2) + L_2 f(-1) + L_3 f(1) + L_4 f(2)$ is used to approximate f(0) then L_3 is
 - (A) 0
 - (B) $\frac{1}{3}$
 - (C) $\frac{2}{3}$
 - (D) $\frac{4}{3}$
- 11. A steam boat is moving with velocity v₁ when steam is shut off. If the retardation at any subsequent time is equal to the magnitude of the velocity at that time, then the velocity fin time it after the steam in shut off is
 - (A) v₁e^t
 - (B) v₁e^{-t}
 - (C) 2v₁e^t
 - (D) 2v₁e^{-t}

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

VPM CLASSES

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

- **12.** Which one of the following statement is not correct?
 - (A) Every positive integer is either even or odd
 - (B) No integer is both even and odd
 - (C) For any integer, a, a² is even if and only if a is even
 - (D) No integer is both even and prime
- **13.** Which one of the following is correct?
 - (A) Between any two rational numbers, there is an integer
 - (B) Between any two irrational numbers, there is a rational number
 - (C) Between any two irrational numbers, there is an integer
 - (D) Sum of two irrational numbers is always irrational
- **14.** If f(x) and g(x) are differentiable function for $0 \le x \le 1$ such that f(1) f(0) = k[g(1)-g(0)]. $k \ne 0$ then there exists c satisfying 0 < c < 1.

What is equal to
$$\frac{f'(c)}{g'(c)}$$
?

- (A) 2k
- (B) k
- (C) –k
- (D) $\frac{1}{k}$
- **15.** Which one of the following functions is continuous at origin?

(A)
$$f(x) = \cos\left(\frac{1}{x}\right)$$
; when $x \neq 0$, $f(0) = 0$

(B)
$$f(x) = \sin x \sin \left(\frac{1}{x}\right)$$
; when $x \neq 0$, $f(0) = 0$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

(C)
$$f(x) = x + \sin\left(\frac{1}{x}\right)$$
; when $x \neq 0$, $f(0) = 1$
(D) $f(x) = \sin x \sin\left(\frac{1}{x}\right)$, when $x \neq 0$, $f(0) = 1$

16. If
$$u = \frac{xy}{x+y}$$
, then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ is equal to:

- (A) 1
- (B) u
- (C) u
- (D) 0

17. For the function
$$f(x, y) = x^5 F\left(\frac{y}{x}\right)$$
, the value of the differential $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ is equal to:

(A) $5x^{5}F\left(\frac{y}{x}\right)$ (B) $5x^{4}F\left(\frac{y}{x}\right)$ (C) $4x^{5}F\left(\frac{y}{x}\right)$

(D)
$$4x^{4}F\left(\frac{y}{x}\right)$$

18. The set
$$S_1 = \left\{ \alpha = \begin{bmatrix} 1 & -2 & 4 \\ 3 & 0 & -1 \end{bmatrix}, \beta = \begin{bmatrix} 2 & 4 & 8 \\ 6 & 0 & -2 \end{bmatrix} \right\}$$
 and $S_2 = \left(f = u^3 + 3u + 4, g = u^3 + 4u + 3 \right)$ are :

- (A) Both linearly dependent
- (B) Both linearly independent
- (C) ${\rm S}_{\rm 1}$ is linearly dependent but ${\rm S}_{\rm 2}$ is not
- (D) ${\rm S_2}$ is linearly dependent but ${\rm S_1}$ is not

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

19. If the linear transformation T: $\mathbb{R}^2 \to \mathbb{R}^3$ is such that T (1, 0) = (2, 3, 1) and T(1, 1) = (3, 0, 2),

then:

(A) T(x, y) = (x + y, 2x + y, 3x - 3y)

(B) T(x,y) = (2x + y, 3x - 3y, x + y)

- (C) T(x, y) = (2x y, 3x + 3y, x y)
- (D) T(x, y) = (x y, 2x y, 3x + 3y)
- **20.** Multiplication of a complex number z by (1 + i) rotates the radius vector to z in the complex plane by an angle:
 - (A) 90° clockwise
 - (B) 45° clockwise
 - (C) 90° anticlockwise
 - (D) 45° anticlockwise
- **21.** If $(\sqrt{3} + i)^{100} = 2^{99} (a + ib)$, then $a^2 + b^2$ is equal to _____.
- 22. In a city, three daily newspapers A, B, C are published, 42% of the people in that city read A, 51% read B and 68% read A and B; 28% read B and C; 36% read A and C; 8% do not read any of the three newspapers. The percentage of persons who read all the three papers is _____.
- **23.** If the set Z of integers is a group under the binary operation * defined as m * n = m + n + 1, $n \in Z$, then the inverse of the element 5 is _____.
- In an abelian group, the order of an element a is 4 and the order of an element b is 3, then (ab)¹⁴ is equal to:
 - (A) a²b⁻¹
 - (B) (ab)⁻²
 - (C) a²

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

(D) b

25. Which of the following rings are integral domains?

1. Z₆₀ 2. Z₇₁ 3. Z₈₂ 4. Z₉₇

Select the correct answer using the codes given below:

(A) 1 and 2

- (B) 2 and 3
- (C) 2 and 4
- (D) 3 and 4

26. A ring $(R, +, \cdot)$ whose all elements are idempotent is:

- (A) Always abelian
- (B) An integral domain
- (C) A division ring
- (D) A field

27. If $f(x) = \begin{cases} x^{\left(\frac{1}{k}\right)-1} \cos\left(\frac{1}{x}\right); & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ then under what condition is f9x) differentiable at x = 0? (A) $k > \frac{1}{2}$

(B) $k \ge \frac{1}{2}$

 $(C) \ k \leq \frac{1}{2}$

(D)
$$k < \frac{1}{2}$$

28. Which one of the following differential equations is exact?

(A) $(3x^3 + 2y \sin 2x) dx + (2 \sin 2x + 3y^3) dy = 0$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

(B)
$$ye^{xy}dx + (e^{xy} + 2y)dy = 0$$

(C)
$$(2 xy \cos x^3 + 2xy + 1) dx + (\sin - x^2) dy = 0$$

(D)
$$y\left(1+\frac{1}{x}\right)+\cos y+\left(x+\log x-x\sin y\right)\frac{dy}{dx}=0$$

- **29.** The general solution of the differential equation dy/dx = y/x + tany/x is:
 - (A) y = c x sin x
 - (B) $y/x = \sin x$
 - (C) $\sin(y/x) = cx$
 - (D) sin(y/x) = c sin x

where c is an arbitrary constant.

- **30.** If integers a, b > 1; then the set of all integers of the form ma + nb (m, n integers) includes:
 - (A) Both their GCD and LCM
 - (B) Their GCD but not LCM
 - (C) Their LCM but not GCD
 - (D) Neither their LCM nor GCD
- 31. Which one of the following statements for sets A, B, C is correct?

(A)
$$A - (B \cup C) = (A - B) \cup (A - C)$$

- (B) $A \cup (B C) = (A \cup B) (A \cup C)$
- (C) $A (B \cap C) = (A B) \cap (A C)$
- (D) $A (B \cup C) = (A B) \cap (A C)$
- **32.** If $u = x^2 + y^2 + z^2$, then

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$$
 is equal to:

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

- (A) 4u
- (B) u²
- (C) u
- (D) 2u

33. If $T : \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x - y, y + 3z, x + 2y), then T^{-1} is

(A)
$$\left(2x+z, -x+z, \frac{x}{3}+y-\frac{z}{3}\right)$$

(B) $\frac{1}{3}\left(2x+y, -x+y, \frac{1}{3}x-\frac{1}{3}y+z\right)$
(C) $\frac{1}{3}\left(x+2y, x-y, -\frac{1}{3}x+\frac{1}{3}y-z\right)$
(D) $\frac{1}{3}\left(x-2y, x+y, \frac{x}{3}-\frac{y}{3}-z\right)$

34. Let V be a vector space of 2 × 2 matrices over R. Let T be the linear mapping T : V \rightarrow V, such that T(A) = AB – BA,

$$B = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$
, then the nullity of T is _____.

35. The value of $i^{1/3}$ are :

(A) $-i, \frac{i \pm \sqrt{3}}{2}$ (B) $i, \frac{i \pm \sqrt{3}}{2}$ (C) $-i, \frac{\sqrt{3i} \pm 1}{2}$ (D) $i, \frac{\sqrt{3i} \pm 1}{2}$

36. If α is a complex number such that $\alpha^2 + \alpha + 1 = 0$, then α^{31} is equal to _____.

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

- **37.** If the matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} i & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} -i & 0 \\ 0 & 0 \end{pmatrix}$ from a group with respect to matrix multiplication, then which one of the following statements about the group, thus formed, is correct?
 - (A) The group has no element of order 4α
 - (B) The group has an element of order 3α
 - (C) The group is non-abelian
 - (D) $\begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$ is its own inverse
- **38.** A random sample of size n is chosen from a population with probability density function f(x,

$$\theta) = \begin{cases} \frac{1}{2}e^{-(x-\theta)}, x \ge \theta \\ \frac{1}{2}e^{(x-\theta)}, x < \theta \end{cases}$$
 Then, the maximum likelihood estimator of θ is the

- (A) Mean of the sample
- (B) Standard deviation of the sample
- (C) Median of the sample
- (D) Maximum of the sample
- **39.** The ring of integers (mod 6) is
 - (A) A finite integral domain
 - (B) An infinite integral domain
 - (C) A field
 - (D) Not an integral domain
- 40. If n denotes the number of elements in a field, then n must be:
 - (A) A prime
 - (B) A prime of the form 4k + 1

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

- (C) A product of distinct primes
- (D) A power of a prime
- **41.** The singular solution of the differential equation

$$(xp - y)^2 = p^2 - 1$$
, where $p = dy/dx$, is:

- (A) $x^2 + y^2 = 1$
- (B) $x^2 y^2 = 1$
- (C) $x^2 + 2y^2 = 1$
- (D) $2x^2 + y^2 = 1$
- **42.** The singularity of the equation

$$= \frac{2}{3}x\frac{dy}{dx} - \frac{2}{3x}\left(\frac{dy}{dx}\right)^{2}, x > 0 \text{ is:}$$
(A) $y = x^{3}$
(B) $y = x$
(C) $y = x^{3}/6$
(D) $y = x^{3}/2$

- **43.** The orthogonal trajectories of the system of parabolas $y^2 = 4a(x + a)$, a being the parameter, is given by the system of the curves:
 - (A) $y^2 = 4a(x + a)$
 - (B) $y^2 = 4a(x a)$
 - (C) $y^2 = 4ax$
 - (D) $x^2 = 4ay$
- 44. Consider a mapping f from the set of natural numbers to the set of integers Z defined by

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

Then $f: N \rightarrow Z$ is :

- (A) one-one but not onto
- (B) Onto but not one-one
- (C) Both one-one and onto
- (D) Neither one-one nor onto
- **45.** If α , β are the roots of the equation $ax^2 + bx + c = 0$, then

$$\lim_{x \to \alpha} \frac{1 - \cos(\alpha x^2 + bx + c)}{(x - \alpha)^2} \text{ is equal to:}$$
(A) 0
(B) $\frac{a}{2}(\alpha - \beta)^2$
(C) $-\frac{a}{2}(\alpha - \beta)^2$
(D) $\frac{a^2}{2}(\alpha - \beta)^2$
(D) $\frac{a^2}{2}(\alpha - \beta)^2$
46. If $f(x) = \begin{cases} x^{\alpha} \cos 1/x, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is continuous at $x = 0$, then:
(A) $\alpha < 0$
(B) $\alpha > 0$
(C) $\alpha = 0$
(D) α may b positive, negative or zero
47. The value of $\lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}$ is ______.

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

Statement for COMMON DATA Questions 48 and 49

Let a random variable X follow the exponential distribution with mean 2. Define Y = [X - 2|X > 2]

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

- **48.** The value of $P(Y \ge t)$ is
 - (A) e^{-t/2}
 - (B) e^{-2t}
 - (C) $\frac{1}{2}e^{-t/2}$
 - (D) $\frac{1}{2}e^{-t}$
- **49.** The value of E(Y) is equal to _____.

Statement for COMMON DATA Questions 50 and 51

Let the random variables X and Y be independent Poisson variates with parameters $\boldsymbol{\lambda}_1$ and

 λ_2 respectively.

- 50. The conditional distribution of X given X+ Y is
 - (A) Poisson
 - (B) Hypergeometric
 - (C) Geometric
 - (D) Binomial

51. The regression equation of X on X + Y is given by

(A)
$$E(X | X + Y) = XY \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

(B)
$$E(X | X + Y) = (X + Y) \frac{\lambda_2}{\lambda_1 + \lambda_2}$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

(D)
$$E(X | X + Y) = XY \frac{\lambda_2}{\lambda_1 + \lambda_2}$$

Statement for Linked Answer Questions 52 and 53:

Let
$$f(z) = \cos z - \frac{\sin z}{z}$$
 for non-zero $z \in C$ and $f(0) = 0$. Also, let $g(z) = \sinh z$ for $z \in C$

- **52.** Then f(z) has a zero at z = 0 of order _____.
- **53.** Then $\frac{g(z)}{zf(z)}$ has a pole at z = 0 of order _____.

Statement for linked answer Questions 54 and 55

Consider the boundary value problem

$$u_{xx} = u_{yy} = 0, x \in (0, \pi), y \in (0, \pi),$$

$$u(x, 0) = u(x, \pi) = u(0, y) = 0.$$

54. Any solution of this boundary value problem is of the form

(A)
$$\sum_{n=1}^{\infty} a_n$$
 sinh nx sin ny
(B) $\sum_{n=1}^{\infty} a_n$ cosh nx ny
(C) $\sum_{n=1}^{\infty} a_n$ sinh nx cos ny
(D) $\sum_{n=1}^{\infty} a_n$ cosh nx cos ny

55. If an additional boundary condition $u_x(\pi, y) = \sin y$ is satisfied, the $u(x, \pi/2)$ is equal to

(A)
$$\frac{\pi}{2}(e^{\pi}-e^{-\pi})(e^{\pi}-e^{-\pi})$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

(B)
$$\frac{\pi(e^x + e^{-x})}{(e^{\pi} - e^{-\pi})}$$

(C)
$$\frac{\pi(e^x + e^{-x})}{(e^{\pi} + e^{-\pi})}$$

(D) $\frac{\pi}{2}(e^{\pi}+e^{-\pi})(e^{x}+e^{-x})$

General Aptitude (GA) Questions (Q. 56-65)

- **56.** A butler stole wine from a butt of sherry, which contained 30% spirit and he replaced what he had stolen by wine containing 12% spirit. The butt was then of 18% strength. How much of the butt did he steal?
 - (A) 2/3
 - (B) 1/3
 - (C) 4/3
 - (D) 3/4
- **57.** Find the average of all prime numbers between 30 and 50.
 - (A) 39.8
 - (B) 37.3
 - (C) 35 (D) 41
- **58.** 64, 144, 256, 400...
 - (A) 529
 - (B) 484
 - (C) 676
 - (D) 576
- 59. What is the Antonym of Aggressive?

- (B) Militant
- (C) Retiring
- (D) Noisy
- 60. What is the synonym of Voracious?
 - (A) Tenacious
 - (B) Truthful
 - (C) Spacious
 - (D) Ravenous
- 61. What is the synonym of Abortive
 - (A) Fruitful
 - (B) Familiar
 - (C) Unsuccessful
 - (D) Consuming
- **62.** Fragile: Hardy
 - (A) Awkward: clumsy
 - (B) Orthodox: traditional
 - (C) Amateur: professional
 - (D) Cautious: flippant

63. Chapter: Book

- (A) alcove: nook
- (B) paragraph: sentence
- (C) Page: rip
- (D) room: house

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

- (A) Prejudice
- (B) Tendency
- (C) Resent
- (D) Inclination
- 65. What is the Antonym of Coincidence?
 - (A) incidence
 - (B) Accident
 - (C) Chance
 - (D) Adaptation

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

VPM CLASSES

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

ANSWER KEY

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Answer.	0	В	0	3	С	В	12	В	D	В	В	D	В	В	В	В	Α	С	В	D
Question	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Answer.	4	25	-7	Α	C	C	D	D	С	В	D	D	Α	0	Α	1	D	D	D	Α
Question	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	5	58	59	60
Answer.	В	C	Α	Α	D	В	S	Α	2	D	С	2	3	Α	C	Α	Α	D	С	D
Question	61	62	6 3	64	65															
Answer.	С	С	D	С	Α															

HINTS AND SOLUTIONS

1. 0

Given that f(x, y) is continuous at (0, 0) for that $(x, y) \rightarrow (0, 0)$ f(x, y) = f(0, 0)

 $\Rightarrow \lim_{(x,y)\to(0,0)} \left[\frac{x^2 y^2}{(x+y)^2} [1 + \log(1 - (x+y))] \right] = k$ $\Rightarrow \lim_{(x,y)\to(0,0)} \left[\frac{x^2 y^2}{(x+y)^2} [1 - (x+y) - \frac{(x+y)^2}{2!} \dots] \right] = k$ $\Rightarrow 0 = k$ 2. (B) Since Let A = $\begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & 2 & 3 & 10 \\ 1 & 2 & \lambda & \mu \end{bmatrix}$

by elementary matrix transformations changing A in echelon form.

	[1	1	1	6		[1	1	1	6	
A ~	0	1	2	4	~	0	1	2	4	
	0	1	$\lambda - 1$	$\mu - 6$		0	0	$\lambda - 3$	6 4 μ-10	

Rank (A) = 3 for $\lambda \neq 3$

 \Rightarrow nullity A = no. of columns – Rank A

$$= 4 - 3$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

3. 0

A skew Hermitian matrix have all its eigenvalues either pure imaginary or zero and we know that imaginary values comes in pair so another eigenvalue of that matrix can be either 0 or 2i

4. 3

Given l.p.p. Max $z = 2x_1 - 4x_2$

s.t. $x_1 + 2x_2 \le 3$ $3x_1 + 4x_2 \le 5$ $x_1 \le 5$ $x_2 \le 5$

here three extreme points but no. of constraint \geq no. of variables so we get no. of basic feasible solution is more than no. of extreme points.

5.(C) If primal problem has an optimal solution then it's dual must have optimal solution and optimum values of primal and dual are same.

6. (C) Probability that the bulb X fails before
$$Y = \frac{100-15}{100} = \frac{85}{100}$$

7. 12

Clearly $[Q(\sqrt[3]{2},\sqrt[4]{3}) : Q] = Q[(\sqrt[3]{2},\sqrt[4]{3}) : Q\sqrt[3]{2}].[Q(\sqrt[3]{2}) : Q]$

By [K : F] = [K : E] [E : F]

and
$$\left[\mathbf{Q}\left[\sqrt[3]{2},\sqrt[4]{3}\right]:\mathbf{Q}\right] = \left[\mathbf{Q}\left(\sqrt[3]{2},\sqrt[4]{3}\right):\mathbf{Q}\sqrt[4]{3}\right] \left[\mathbf{Q}\left(\sqrt[4]{3}\right):\mathbf{Q}\right]$$

Since $[Q\sqrt[3]{2} : Q] = 3$

and $[Q\sqrt[4]{3} : Q] = 4$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSC ENTRANCE EXAMS
divide
$$[Q(\sqrt[3]{2}, \sqrt[4]{3}) : Q]$$
 in both
Thus $[Q\sqrt[3]{2}, \sqrt[4]{3} : Q] \ge 0$
on the other hand $[Q(\sqrt[3]{2}, \sqrt[4]{3}) : Q\sqrt[3]{2}]$ is at most 4 since $\sqrt[4]{3}$ is a zero for $x^4 - 3 \in Q\sqrt[3]{2} x$.
Therefore $[Q(\sqrt[3]{2}, \sqrt[4]{3}) : Q] = [Q\sqrt[3]{2}, \sqrt[4]{3} : Q\sqrt[3]{2}] [Q\sqrt[3]{2} : Q]$
 ≤ 4.3
 $= 12$
8. (B) The given equation can be written as
 $(D^2 + D'^2) = 12(x + y)$...(1)
It's auxiliary equation is $m^2 + 1 = 0$
so that $m = \pm i$
 $C.F. = \phi_1(y + ix) + \phi_2(y - ix)$

TTDM OT AGGEG

 $\phi^{}_1 \, \phi^{}_2$ being arbitrary functions '

100

Now PI = $\frac{1}{D^2 + D^{12}} 12(x + y)$ = $12 \frac{1}{D^2 + D^{12}} (x + y)$ = $\frac{12}{1^2 + 1^2} \int \int v dv dv$ = $6 = v^3 = (x + y)^3$

Required GS V = $\phi_1(y + ix) + \phi_2(y - ix) + (x + y)^3$

9.(D) Two-point trapezoidal rule is

$$\int_{a}^{b} f(x) dx = \frac{f(b) - f(a)}{2}$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

Hence $\int_0^{\frac{\pi}{2}} e^{\sin x} dx = \frac{f\left(\frac{\pi}{2}\right) - f(0)}{2}$

$$=\frac{e-1}{2}$$

10.(B) L_3 is coefficient of term f(1) is given by

$$\frac{1}{(1+2)(1+1)(1-2)} = \frac{1}{3}$$

- **11.(B)** A steam boat is moving with a velocity v_1 when steam is shut off. If the retardation at any subsequent time is equal to the magnitude of the velocity at the time, the velocity in time t after the steam is shut off will be equal to $v_1 e^{-t}$.
- 12.(D) No integer is both even and prime

Prime number-an integer $P \ge 2$ is said to be a prime number if its divisors are ± 1 and $\pm P$.

 \therefore Integer 2 is prime and even both.

- **13.(B)** Between any two irrational numbers, there is a rational number is a correct statement.
- **14.(B)** By the Cauchy second mean value theorem we know that "if two function f, g defined on [a, b] are
 - 1. continuous on [a, b]
 - 2. derivable on (a, b) and
 - 3. g'(x) \neq 0 for any x \in (a, b)

then there exists at let one real no. c between a and b such that

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}$$

Now Here uses this theorem we get

$$\frac{f'(c)}{g'(c)} = k$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

Δ

15.(B) option-a
$$f(x) = \cos at x \neq 0$$
 $f(0) = 0$
then $f(0+h) = \lim_{h \to 0} \cosh \frac{1}{h} = [Value b/w + to 1]$
 $f(0-h) = \lim_{h \to 0} \cosh \left(\frac{1}{-h}\right) = [Value b/w - 1 to 1]$
 $f(0) = 0$
Since $(f0 + h) \neq f(0) \neq f(0 - h)$
Thus, $f(x)$ is not continuous at $x = 0$
option-c $f(x) = x + \sin \frac{1}{x}$ at $x \neq 0$, $f(0) = 1$
then $f(0 + h) = \lim_{h \to 0} h + \sin \frac{1}{h}$
 $= 0 + [Value b/w - 1 to 1]$
 $f(0 - h) = \lim_{h \to 0} -h - \sin\left(\frac{1}{h}\right)$
 $= 0 - [Value b/w - 1 to 1]$
Since $f(0th) \neq f(0) \neq f(0th)$
Thus $f(x)$ is not continuous at $x = 0$
option -b
 $f(x) = \sin x \frac{1}{x} \sin at x = 0$, $f(0) = 0$
then $f(0 + h) = \lim_{h \to 0} \sinh \sin \frac{1}{h}$

= 0

= sin o sin $\left(\frac{1}{0}\right)$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

$$f(0 - h) = \lim_{h \to 0} \sin(-h) \sin\left(\frac{-1}{h}\right)$$
$$= \lim_{h \to 0} \sin h \frac{1}{h}$$
$$= 0$$

Since f(0 + h) = f(0) = f(= -h)

Thus, the function is continuous at origin

16.(B) Here, it is given that

$$u = \frac{xy}{x+y}$$

 \because u is a homogeneous equation of degree one

: By Euler's theorem

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 1 \cdot u = u$$

17.(A) Given function $f(x, y) = x^5 F\left(\frac{y}{x}\right)$

... We know Euler's theorem is

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf(x,y)$$

where $n \rightarrow$ degree of the function

: Using this theorem,

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 5x^5F\!\left(\frac{y}{x}\right)$$

18.(C) Here, the sets

$$S_1 = \left\{ \alpha = \begin{bmatrix} 1 & -2 & 4 \\ 3 & 0 & -1 \end{bmatrix}, \beta = \begin{bmatrix} 2 & 4 & 8 \\ 6 & 0 & -2 \end{bmatrix} \right\}$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

or
$$S_1 = \left\{ \alpha = \begin{bmatrix} 1 & -2 & 4 \\ 3 & 0 & -1 \end{bmatrix}, \beta = 2 \begin{bmatrix} 1 & -2 & 4 \\ 3 & 0 & -1 \end{bmatrix} \right\}$$

So, we can see that in set $S_1\beta = 2\alpha$

 \therefore S₁ is linearly dependent.

and set

$$S_2 = \{f = u^3 + 3u + 4, g = u^3 + 4u + 3\}$$

then,	$f = u^3 + 3u + 4$							
and	$g = u^3 + 4u + 3$							
Now,	af + bg = 0							
<i>.</i>	a(u ³ + 3u + 4) + b (u ³ + 4u + 3)							
or	$au^3 + 3au + 4a + bu^3 + 4bu + 3b = 0$							
or	$(a + b)u^3 + (3a + 4b)u + (4a + 3b) = 0$							
\Rightarrow		a + b = 0						
		3a + 4b = 0						
and		4a + 3b = 0						
∴ From	ı Eq. (i)	a = -b						
Putting this value in Eq. (ii), we get								
		3(-b) + 4b = 0						
or		-3b + 4b = 0						
<i>.</i>		b = 0						
then		a = 0						
and	and $af + bg = 0 \Rightarrow a = 0 and b = 0$							
Hence, f and g are linearly independent.								

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

WhatsApp: 9001894070 Website: www.vpmclasses.com

So, the multiplication of complex number z by (1 + i) rotates vector to z in the complex plane by an angle 45° anticlockwise.

21. 4

Here, we will write

$$\left(\sqrt{3}+i\right)^{100} = 2^{100} \left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{100}$$

When we change $\frac{\sqrt{3}}{2} + \frac{i}{2}$ into polar form, we get

Let
$$z = \frac{\sqrt{3}}{2} + \frac{i}{2} = r(\cos\theta + i\sin\theta)$$

Then
$$r\cos\theta = \frac{\sqrt{3}}{2}$$
 and $r\sin\theta = \frac{1}{2}$

Now, squaring and adding these, we get

$$r^{2}\left(\cos^{2}\theta + \sin^{2}\theta\right) = \left(\frac{\sqrt{3}}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}$$
$$r^{2} = \frac{3}{4} + \frac{1}{4} = 1$$

or

$$\therefore$$
 $\cos\theta = \frac{\sqrt{3}}{2}$ and $\sin\theta = \frac{1}{2}$

r =1

:. The value of θ , such that $-\pi < \theta < \pi$ and satisfying both the above equations is given by

$$\theta = \frac{\pi}{6}$$
.

 \therefore Required polar for $=\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$

:.
$$\left(\sqrt{3} + i\right)^{100} = 2^{100} \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^{100}$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

Mobile: 9001297111, 9829567114 E-Mail: <u>info@vpmclasses.com</u>

Page 27

$$= 2^{100} \left(\cos \frac{100\pi}{6} + i \sin \frac{100\pi}{6} \right)$$
$$= 2^{100} \left(\cos \frac{50\pi}{3} + i \sin \frac{2\pi}{3} \right)$$
$$= 2^{100} \left\{ \cos \left(8 \times 2\pi + \frac{2\pi}{3} \right) + i \sin \left(8 \times 2\pi + \frac{2\pi}{3} \right) \right\}$$
$$= 2^{100} \left\{ \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right\}$$
$$\left(\sqrt{3} + I \right)^{100} = 2^{100} \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = 2^{100} \left(-\frac{1 + i \sqrt{3}}{2} \right)$$
$$= 2^{99} \left(-1 + i \sqrt{3} \right)$$

Comparing with $2^{99}(a+ib)$, we get

a = -1, b = $\sqrt{3}$ ∴ a² + b² = (-1)² + $(\sqrt{3})^2$ = 1 + 3 = 4

Short method

$$\frac{1}{2^{99}} \left(\sqrt{3} + i \right)^{100} = (a + ib)$$

$$\Rightarrow \qquad 2 \left[\frac{\sqrt{3}}{2} + \frac{i}{2} \right]^{100} = (a + ib)$$

$$\Rightarrow \qquad 2 \left[\cos\left(\frac{\pi}{6}\right) + i \sin\left(\frac{\pi}{6}\right) \right]^{100} = (a + ib)$$

$$\Rightarrow \qquad 2 \left[\cos\frac{100\pi}{6} + i \sin\left(\frac{100\pi}{6}\right) \right] = a + ib$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u> Mobile: 9001297111, 9829567114 E-Mail: <u>info@vpmclasses.com</u>

Page 28

VPM CLASSES

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$\Rightarrow \qquad a = 2\cos\frac{50\pi}{3}, b = 2\sin\left(\frac{50\pi}{3}\right)$$

Now $a^2 + b^2 = 4$ **Ans.(D)**

22. 25

Here, A, B, C are three published newspapers.

 \therefore Public read A newspaper n(A) = 42%

Public read B newspaper n(B) = 51%

Public read C newspaper n(C) = 68%

Public read newspaper A and B both $n(A \cap B) = 30\%$

Public read newspaper B and C both $n(B \cap C) = 28\%$

Public read newspaper A and C both $n(A \cap C) = 36\%$

Public who do not read any paper = 8%

Let the persons who read all the three papers = x

 $\therefore \qquad n(A \cup B \cup C) = n(A) + n(B) + n(A \cap B)$

 $-n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$

92 = 41 + 51 + 68 - 30 - 128 - 36 + x

or, 92 = 161 - 94 - 161 + 94

 \therefore x = 92 - 161 + 94

x = 25

```
23.
```

-7

Here, It is given that the set Z of integers is group under the binary operation * defined as m * n = m + n + 1, $m, n \in Z$.

: Identity element: let e be the identity element in Z for binary operation *, then

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

 $m * e = m = e^* m \forall m \in N$

- \Rightarrow m * e = m
- \Rightarrow m + e + 1 = m

Inverse element: Let m be the inverse of the elements, then

$$\Rightarrow$$
 m + 5 + 1 = -1

- $\Rightarrow \qquad m = -1 6 = -7$
- **24.(A)** Here, it is given that in an abelian group, the order of an element a is 4 and the order of an element b is 3.

 \therefore Order of a is 4 \therefore a⁴ = e

Where e is the identity of the group and order of b is 3

$$\therefore$$
 b³ = e

 \because Group is abelian, then

$$(ab)^{14} = a^{14} \cdot b^{14}$$

= $a^{12} \cdot a^2 \cdot b^{12} \cdot b^2$
= $(a^4) \cdot a^2 \cdot (b^3)^4 \cdot b^2$
= $e^3 \cdot a^2 \cdot e^4 \cdot b^2$
= $a^2b^2 \cdot bb^{-1}$
= $a^2b^3b^{-1}$
= a^2eb^{-1}
= a^2b^{-1}

25.(C) We know that the number of elements in a integral domain is either p or p^n .

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

- \therefore Only possible options are Z_{71} and Z_{97} containing prime number.
- A ring $(R, +, \cdot)$ whose all elements are idempotent is a division ring. 26.(C)
- **27.(D)** Given that the function f(9x) is

differentiable at x = 0 i.e.

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{(9h)^{\frac{1}{k} - 1} \cos\left(\frac{1}{9h}\right)}{h}$$

$$= \lim_{h \to 0} \cos\left(\frac{1}{9h}\right) \lim_{h \to 0} 9^{\left(\frac{1}{k} - 1\right)} h^{\frac{1}{k} - 2}$$

$$= [value \ b/w - 1 \ to \ 1] \ 9^{\frac{1}{k} - 1} \lim_{h \to 0} h^{\left(\frac{1}{k} - 2\right)}$$

$$= 0 \text{ possible only when } \frac{1}{k} - 2 > 0 \text{ i.e. } K < \frac{1}{2}$$

28.(D) We can check for exact differential equation

$$y\left(1+\frac{1}{x}\right)+\cos y+(x+\log x-x\sin y)\frac{dy}{dx}=0$$
 ... (i)

It can be written as

$$\left\{ y \left(1 + \frac{1}{x} \right) + \cos y \right\} dx + \left\{ x + \log x - x \sin y \right\} dy = 0$$

Here
$$M = y \left(1 + \frac{1}{x} \right) + \cos y$$

 $\therefore \qquad \frac{\partial M}{\partial y} = \left(1 + \frac{1}{x}\right) - \sin y$

and

$$N = x + \log x - x \sin y$$

WhatsApp: 9001894070 Website: www.vpmclasses.com

...

 $\frac{\partial N}{\partial x} = \left(1 + \frac{1}{x}\right) - siny$

So, we can see that

$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x} = 1 + \frac{1}{x} - siny$$

 \therefore Differential equation is exact.

29.(C) Here, given differential equation is

which is a homogeneous differential equation.

$$\therefore$$
 Put $y = vx$

or, $\frac{dy}{dx} = v + x \frac{dv}{dx}$

$$\therefore \qquad v + x \frac{dv}{dx} = \frac{vx}{x} + \tan \frac{vx}{x}$$

$$\Rightarrow \qquad \mathbf{v} + \mathbf{x} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{x}} = \mathbf{v} + \tan \mathbf{v}$$

$$\Rightarrow \qquad x\frac{dv}{dx} = \tan v$$

or,
$$\frac{dv}{tanv} = \frac{dx}{x} \Longrightarrow \cot v \, dv = \frac{dx}{x}$$

Now, integrating it, we get

$$\log \sin v = \log x + \log c$$

$$\Rightarrow$$
 sin v = x c

$$\Rightarrow \qquad \sin \frac{y}{x} = c x$$

30.(B) Here, it is given that integers a, b > 1

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

Let c be the GCD of a and b, then

c = (a, b)

If there exist integers m, n such that

c = ma + nb

then the set of all integers of the form ma + n (m, n integers) includes their GCD but not LCM.

31.(D) Le

Let
$$x \in A - (B \cup C)$$

$$\Rightarrow$$
 $x \in A \text{ and } x \notin (x \cup C)$

$$\Rightarrow$$
 $x \in A \text{ and } (x \in B, x \notin C)$

$$\Rightarrow \qquad (x \in A \text{ and } x \notin B) \text{ and } (x \in A \text{ and } x \notin C)$$

and $x \in (A - B)$ and $x \in (A - C)$

$$\Rightarrow \qquad x \in (A - B) \cap (A - C)$$

 $\therefore \qquad \mathsf{A} - (\mathsf{B} \cup \mathsf{C}) \subseteq \mathsf{A} - (\mathsf{B} \cup \mathsf{C})$

Similarly,

$$(A-B) \cap (A-C) \subseteq A - (B \cup C)$$

Hence, $A - (B \cup C) = (A - B) \cap (A - C)$

32.(D) Here $u = x^2 + y^2 + z^2$.

It is a homogeneous function of degree 2.

$$\therefore \text{ By Euler's theorem } x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = nu = 2u$$

33.(A) Here, T(x, y, z) = (x - y, y + 3z, x + 2y)

Now, let T(x, y, z) = (uvw)

then $T^{-1}(uvw) = (x, y, z)$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

So,
$$T(x, y, z) = (x - y, y + 3z, x + 2y) = (u, v, w)$$

$$\Rightarrow \quad x - y = u \qquad \dots(i)$$

$$y + 3z = v \qquad \dots(ii)$$

$$x + 2y = w \qquad \dots(iii)$$
Taking equation (i) and (ii)

....(i)

....(ii)

By subtracting
$$\frac{x - y = u}{2x \pm 2y = w}$$
$$\frac{-x \pm 2y = w}{0 - 3y = u - w}$$

 $y = -\frac{u+w}{3}$ or

Putting this value in equation (i), we get

$$\mathbf{x} - \left(\frac{-\mathbf{u} + \mathbf{w}}{3}\right) = \mathbf{u}$$

or $x + \frac{u - w}{3} = u$

LASSES

or
$$x = u - \frac{(u-w)}{3}$$

$$x = \frac{3u - u + w}{3} = \frac{2u + w}{3}$$

and from equation (ii) $\left(\frac{-u+w}{3}\right) + 3z = v$

or
$$3z = v - \left(\frac{-u+w}{3}\right)$$

$$3z = \frac{3v + u - w}{3}$$

WhatsApp: 9001894070 Website: www.vpmclasses.com

 $\therefore \qquad Z = \frac{3v + u - w}{3 \times 3}$ $= \frac{3v}{9} + \frac{u}{9} - \frac{w}{9}$ $Z = \frac{1}{3} \left(v + \frac{u}{3} - \frac{w}{3} \right)$ $\therefore \qquad T^{-1}(u \ v \ w) = (x, \ y, \ z)$ or $T^{-1}(u \ v \ w) = \frac{1}{3} (2u + w, -u + w, \ \frac{u}{3} + v - \frac{w}{3})$ or $T^{-1}(x, \ y, \ z) = \frac{1}{3} (2x + z, -x + z, \ \frac{x}{3} + y - \frac{z}{3})$

34.

0

Here linear mapping is T : V \rightarrow V, such that T(A) = AB – BA, where

$$B = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$
Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
Then
$$AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 2a & a+3b \\ 2c & c+3d \end{bmatrix}$$
and
$$BA = \begin{bmatrix} 2a+c & 2b+d \\ 3c & 3d \end{bmatrix}$$

$$T(A) = AB - BA$$

$$= \begin{bmatrix} 2a & a+3b \\ 2c & c+3d \end{bmatrix} - \begin{bmatrix} 2a+c & 2b+d \\ 3c & 3d \end{bmatrix}$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

i.e. The matrix of T has two non zero rows

Hence rank (T) = 2

 \Rightarrow nullity of T = 2 - 2 = 0

35.(A) Here, i1/3

Let
$$z = i/3$$

 $\Rightarrow z^3 = (i^{1/3})^3 = i$
 $\Rightarrow z^3 - i = 0$
 $\Rightarrow z^3 + i \cdot i^2 = 0$
 $\Rightarrow z^3 + i^3 = 0$
 $\Rightarrow (z + i)(z^2 + i^2 - iz) = 0$ [$\because i^2 = -1$]
 $\Rightarrow z^2 + i^2 - iz = 0$
 $\Rightarrow z^2 - 1 - iz = 0$
 $\Rightarrow z^2 - iz - 1 = 0$
 $\therefore z = -\frac{(-1) \pm \sqrt{(-i)^2 - 4 \cdot 1(-1)}}{2 \cdot 1}$
 $= \frac{i \pm \sqrt{-1 + 4}}{2} = \frac{i \pm \sqrt{3}}{2}$
 $\therefore z = -i, \frac{i \pm \sqrt{3}}{2}$

Here, given α is a complex number: $\alpha^2 + \alpha + 1 = 0$

 \therefore $\alpha^2 + \alpha + 1 = 0$, we will consider $\alpha = \omega$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

36.

Mobile: 9001297111, 9829567114 E-Mail: <u>info@vpmclasses.com</u>

Page 36

$$\therefore \qquad \alpha^{31} = \omega^{31} = \omega^{31} \times 10 + 1 = \omega \qquad [\because \omega^3 = 1]$$
37.(D) Identity element of the group is $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
Now $\begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
Hence, $\begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$ is its own inverse.

$$\therefore$$
 This statement is correct. Ans. (D)

38.(D) Let x_1, x_2, \ldots, x_n be a random sample of n observations from as population and probability density function is defined by

$$f(x, \theta) = \begin{cases} \frac{1}{2}e^{-(x-\theta)}, & x \ge \theta \\ \\ \frac{1}{2}e^{(x-\theta)}, & x < \theta \end{cases}$$

it can be written as $f(x,\theta) = \frac{1}{2} e^{-|x-\theta|}$

The Likelihood function is defined by

$$L = \prod_{i=1}^{n} f(x_{i}, \theta) = \frac{1}{2^{n}} \exp\left[-\sum_{i=1}^{n} |x_{i} - \theta|\right]$$
$$L = \frac{1}{2^{n}} \exp\left[-n|\overline{x}_{i} - \theta|\right]$$
$$\log L = -2\log 2 - n |\overline{x}_{i} - \theta|$$

The Likelihood equations for estimating $\boldsymbol{\theta}.$ given

$$\frac{\partial}{\partial \theta} \text{logL} = 0 = n$$

which is obviously inadmissible

Then we try to locate MLE' for θ by maximizing L directly

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

L is maximum $\Rightarrow \log L$ is maximum

Log L is maximum if $(\bar{x} - \theta)$ is minimum which is so if θ maximum

if $\mathbf{x}_{(1)} \mathbf{x}_{(2)} \dots \mathbf{x}_{(n)}$ is ordered sample from

This population then

- **39.(D)** Since, we know that the ring of integers modulo P is an integral domain if P is prime and if P is not prime. So, here ring of integers (mod 6) is not an integral domain.
- **40.(A)** Given that n is the number of elements in a field, and we know that the ring of modulo $(Z_n,$

 $+_{p}, \cdot_{p}$) is a field if and only if p a prime (p = 2, 3, 5, 7, 9,)

i.e. order of the field is a prime no.

but, if n = 4k + 1 where $k \in N$ then

n = 5, 9, 13, where 9 is not prime

i.e. n is not equal to a prime of the form 4k + 1 and also we know that no. of elements in a field is either prime or some power of prime.

41.(B) Here, given differential equation is

 $(xp - y)^2 = p^2 - 1$

$$\Rightarrow \qquad x^2p^2 + y^2 - 2xyp = p^2 - 1$$

$$\Rightarrow \qquad (x^2-1)p^2-2xyp+y^2+1=0$$

which is quadratic in p.

: Singular solution will be

$$B^2 - 4A = 0$$

$$\Rightarrow \qquad (-2xy)^2 - 4(x^2 - 1)(y^2 + 1) = 0$$

$$\Rightarrow \qquad 4x^2y^2 - 4x^2y^2 + 4y^2 - 4x^2 + 4 = 0$$

$$\Rightarrow \qquad 4y^2 - 4x^2 = -4$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

42.(C) Here, given differentiation equation is

$$y = \frac{2}{3}x\frac{dy}{dx} - \frac{2}{3x}\left(\frac{dy}{dx}\right)^2, x > 0$$

or,
$$y = \frac{2}{3}P - \frac{2}{3x}P^2$$
 $\left[\because P = \frac{dy}{dx}\right]$

$$\text{or}, \qquad \quad \frac{2}{3x}P^2-\frac{2}{3}xP+y=0$$

which is quadratic in P.

 \therefore Singular solution is given B² – 4 AC = 0

$$\Rightarrow \qquad \left(\frac{2}{3}x\right)^2 - 4\left(\frac{2}{3x}\right)(y) = 0$$
$$\Rightarrow \qquad \frac{4}{9}x^2 - \frac{8y}{3x} = 0$$
$$\Rightarrow \qquad \frac{4}{9}x^2 = \frac{8y}{3x}$$
$$\Rightarrow \qquad \frac{x^2}{3} = \frac{2y}{x}$$
$$\Rightarrow \qquad x3 = 6y \text{ or, } y = \frac{x^3}{6}$$

43.(A) Here, given parabolas is

$$y^2 = 4a(x + a)$$
 ... (i)

Now, differentiating it w.r.t. x, we get

$$2y\frac{dy}{dx} = 4a$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

VPM CLASSES

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

or,
$$y\frac{dy}{dx} = 2a$$
 ... (ii)

Now, eliminating a from Eqs. (i) and (ii), we get

$$y^2 \left(\frac{dy}{dx}\right)^2 + 2xy\frac{dy}{dx} - y^2 = 0$$

or,
$$y^2p^2 + 2xP - y^2 = 0$$

$$\Rightarrow \qquad yP^2 + 2xP - y = 0$$

which is self orthogonal as by putting

$$P = \frac{1}{P}, \text{ we get the same equation}$$

as $\Rightarrow y\left(\frac{1}{P}\right)^2 + 2x\frac{1}{P} - y = 0$
 $\Rightarrow y \cdot \frac{1}{P^2} + \frac{2x}{P} - y = 0$
 $\Rightarrow y + 2xP - yP^2 = 0$
 $\Rightarrow yP^2 - 2xP - y = 0$

:. The orthogonal trajectories of system of parabolas $y^2 = 4a (x + a)$ is itself.

i.e.,
$$y^2 = 4a(x + a)$$

44.(A) Here, it is given that the function $f: n \rightarrow Z$ defined by

$$f\left(n\right) = \begin{cases} \frac{n-1}{2}, & \text{when } n \text{ is odd} \\ -n/2, & \text{when } n \text{ is even} \end{cases}$$

Let
$$n_1, n_2 \text{ (odd)} \in N$$
 then $f(n_1) = f(n_2)$

$$\Rightarrow \qquad \frac{n_1 - 1}{2} = \frac{n_2 - 1}{2}$$
$$\Rightarrow \qquad n_1 = n_2$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u> Mobile: 9001297111, 9829567114 E-Mail: <u>info@vpmclasses.com</u>

Page 40

 n_1, n_2 (even) $\in N$, and $f(n_1) = f(n_2)$ then $\Rightarrow \qquad -\frac{n_1}{2} = -\frac{n_2}{2}$ \Rightarrow n₁ = n₂ ∴ f is one-one. Again let t(odd) \in Z, then $f(n) = t \Rightarrow \frac{n-1}{2} = t$ n = 2t + 1 \Rightarrow clearly $n = 2t + 1 \in N \ \forall \ t \in Z$ $t(even) \in Z$, then and $f(n) = t \Longrightarrow \frac{-n}{2} = t$ n = -2t \Rightarrow $\label{eq:clearly} clearly \qquad n=-2t \not\in N \, \forall \, t \in Z.$

 \therefore f is not onto

 \therefore Hence, f is one-one but not onto.

45.(D) Here it is given that a, b are roots of the equation $ax^2 + bx + c = 0$

$$\therefore$$
 a + b - $\frac{b}{a}$ = and $\alpha\beta = \frac{c}{a}$

$$\therefore \qquad \lim_{x \to \alpha} \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2}$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

It is in $\frac{0}{0}$ form

LASSES

So, by L'Hospital's rule

$$\lim_{x \to \alpha} \frac{(2ax+b)\sin(ax^{2}+bx+c)}{2(x-\alpha)}$$

$$\Rightarrow \qquad \lim_{x \to \alpha} \frac{(2ax+b)^{2}\cos(ax^{2}+bx+c)+2a\sin(ax^{2}+bx+c)}{2}$$

$$\Rightarrow \qquad \frac{(2a\alpha+b)^{2}}{2}$$

$$\Rightarrow \qquad \frac{a^{2}}{2}\left(2\alpha+\frac{b}{a}\right)^{2}$$

$$\Rightarrow \qquad \frac{a^{2}}{2}\left[2\alpha-(\alpha+\beta)\right]^{2} \qquad \left[\because \alpha+\beta=\frac{-b}{a}\right]$$

$$\Rightarrow \qquad \frac{a^{2}}{2}(\alpha-\beta)^{2}$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

46.(B) Here, it is given that

$$f(x) = \begin{cases} x^{\alpha} \cos 1/x, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

is continuous at x = 0

∴ We have

$$R \lim_{\alpha \to 0} f(0+h) = \lim_{h \to 0} h^{\alpha} \cos \frac{1}{h}$$
$$= \lim_{h \to 0} h^{\alpha-1} h \cos \frac{1}{h}$$

= 0, If $\alpha - 1 \ge 0$ i.e., $\alpha \ge 1$ or $\alpha \ge 0$

Similarly,

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

 $R\lim_{h\to 9} f(0-h) = 0$

and

3

$$f(0) = 0$$

 \therefore f(x) is continuous at x = 0, if $\alpha > 0$

47.

$$\lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 2^n} = \lim_{n \to \infty} \frac{\frac{3^{n+1}}{3^n} \left[\left(2/3 \right)^{n+1} + 1 \right]}{\left[\left(2/3 \right)^n + 1 \right]} = 3$$

48.(A) Probability distribution function of exponential distribution is given by

$$f(x, \theta) = \begin{cases} \theta e^{-\theta x} & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

and its mean = $\frac{1}{\theta}$

$$\Rightarrow \qquad \theta = \frac{1}{2}$$

so pdf f
$$\left(x,\frac{1}{2}\right) = \begin{cases} \frac{1}{2}e^{-x/2} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

$$\mathsf{P}(\mathsf{Y} \ge \mathsf{t}) = \int_{\mathsf{t}}^{\infty} \mathsf{f}\left(\mathsf{x}, \frac{1}{2}\right) \mathsf{d}\mathsf{x} = \int_{\mathsf{t}}^{\infty} \frac{1}{2} e^{-\mathsf{x}/2} \mathsf{d}\mathsf{n} = \frac{1}{2} \left[\frac{e^{-\mathsf{x}/2}}{-\mathsf{Y}_2} \right]_{\mathsf{t}}^{\infty} = e^{-\mathsf{t}/2} \text{ ans.}$$

49.

2

$$E(Y) = \frac{1}{2} \int_0^\infty x e^{-\frac{1}{2}x} dx$$
$$= \frac{1}{2} \left[\frac{x e^{-\frac{1}{2}x}}{-\frac{1}{2}} - 4 e^{-x/2} \right]_0^\infty$$
$$= \frac{4}{2} = 2$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

50.(D) Let X and Y be independent poisson variates with parameters λ_1 and λ_2

Then X + Y is also poisson variate with parameter λ_1 + λ_2

$$\begin{split} p[X = r \mid (X + Y = n)] &= \frac{p(X = r \cap X + Y = n)}{p(X + Y = n)} \\ &= \frac{p(X = r \cap Y = n - r)}{p(X + Y = n)} \\ &= \frac{p(X = r)p(X = n - r)}{p(X + Y = n)} \quad \text{[since X, Y independent]} \\ &= \frac{e^{-\lambda_1} \frac{\lambda_1^r}{r!} \cdot \frac{e^{-\lambda_2} (\lambda_2)^{n-r}}{(n-r)!}}{\frac{e^{-(\lambda_1 + \lambda_2)}(\lambda_1 + \lambda_2)^n}{n!}} \\ &= \frac{n!}{r!(n-r)!} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^r \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n-r} \\ &= n^c r p^r q^{n-r} \\ \text{where } p = \frac{\lambda_1}{\lambda_1 + \lambda_2} \qquad q = 1 - p \end{split}$$

Hence the conditional distribution of X given X + Y = n is a binomial distribution with parameters n and p = $\frac{\lambda_1}{\lambda_1 + \lambda_2}$

51.(C) Regression equation of X on X + Y is given by

$$= \overline{X} + r \frac{\sigma_x}{\sigma_{x+y}} \left(x + y - \overline{x+y} \right)$$

Since X follows Poisson distribution with parameter λ_1 so mean $\overline{X} = \lambda_1$

$$SD = X = \sqrt{\lambda_1}$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

Also X + Y follows Poisson distribution with parameter $\lambda_1 + \lambda_2$

Then mean = $\lambda_1 + \lambda_2$

SD pf X + Y = $\sqrt{\lambda_1 + \lambda_2}$

and r is correlation coefficient between X and X + Y is given by

$$r = \frac{Cov(x, x + y)}{\sigma_x \sigma_{x+y}}$$
$$= \frac{Cov(x_1 x) + cov(x, y)}{\sigma_x \sigma_{x+y}}$$

Since X, Y are independent

$$\Rightarrow \qquad \text{Cov}(x, y) = 0$$
$$\Rightarrow \qquad r = \frac{\text{Cov}(x, x)}{\sigma_x \sigma_{x+y}}$$

now
$$Cov(x_1 x) = E(x^2) - (E(x))^2$$

$$=\lambda_1$$

so
$$r = \frac{\lambda_1}{\sqrt{\lambda_1}\sqrt{\lambda_1 + \lambda_2}}$$

$$\Rightarrow \quad \text{regression} = \lambda_1 + \frac{\lambda_1}{\sqrt{\lambda_1}\sqrt{\lambda_1 + \lambda_2}} \frac{\lambda_1}{\sqrt{\lambda_1 + \lambda_2}} (x + y(\lambda_1 + \lambda_2))$$

$$= \lambda_1 + \frac{\lambda_1}{\lambda_1 + \lambda_2} (\mathbf{x} + \mathbf{y}) - \frac{(\lambda_1 + \lambda_2)\lambda_1}{\lambda_1 + \lambda_2}$$
$$= \frac{\lambda_1}{\lambda_1 + \lambda_2} (\mathbf{x} + \mathbf{y})$$

Hence the answer.

52. 2

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

Since $f(z) = \cos z - \frac{\sin z}{z}$

to find zeros of f(z) put f(z) = 0

$$\Rightarrow \cos z - \frac{\sin z}{z} = 0$$

$$\Rightarrow \left[1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots \right] - \left[\frac{z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots}{z}\right] = 0$$

$$\Rightarrow \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots \right) - \left(1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots \right) = 0$$

$$\Rightarrow z^2 \left[\frac{1}{3!} - \frac{1}{2!}\right] + \dots = 0$$

so z = 0 is a zero of f(z) of order 2

3

$$\frac{g(z)}{zf(z)} = \frac{\sinh z}{z\cos z - \sin z}$$

To find poles $z \cos z - \sin z = 0$

$$\Rightarrow \qquad \left[z - \frac{z^3}{2!} + \frac{z^5}{4!} - \dots \right] - \left[z - \frac{z^3}{3!} + \dots \right] = 0$$
$$\Rightarrow \qquad z^3 \left[\frac{1}{3!} - \frac{1}{2!}\right] + z^5 \left[\frac{1}{5!} + \frac{1}{4!}\right] = 0$$
$$\Rightarrow \qquad \frac{g(z)}{zf(z)} \text{ have pole at } z = 0 \text{ of order } 3$$

54.(A) Given $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

it is a Laplace eq. of two dimensional let its's sol. is

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u> Mobile: 9001297111, 9829567114 E-Mail: <u>info@vpmclasses.com</u>

...(1)

Page 46

$$U(x, y) = X(x) Y(y)$$

then from (1) and (2)

$$\frac{1}{X_{(x)}} \frac{d^2 X}{dx^2} + \frac{1}{Y(y)} \frac{d^2 Y}{dy^2} = 0$$

$$\Rightarrow \qquad \frac{1}{X(x)}\frac{d^2X}{dx^2} = \frac{-1}{Y(y)}\frac{d^2Y}{dy^2}$$

Since L.H.S and R.H.S. both are independent to each other then each equal to same constant say λ^2 then

...(2)

...(4)

$$\frac{d^2 X}{dx^2} = \lambda^2 X(x) \qquad \dots (3)$$

and $\frac{d^2Y}{dy^2} = -\lambda^2 Y(y)$

sol. of (3) $X(x) = C_1 \cosh \lambda x + C_2 \sinh \lambda x$...(5)

sol. of (4)
$$Y(y) = d_1 \cos \lambda y + d_2 \sin \lambda y \qquad \dots (6)$$

Now using the boundary conditions.

u(x, 0) = 0	\Rightarrow	X(x) Y(0) = 0	\Rightarrow Y(0) = 0	[X(x) ≠ 0]
$u(x, \pi) = 0$	\Rightarrow	$X(x) Y(\pi) = 0$	\Rightarrow Y(π) = 0	[X(x) ≠ 0]
u(0, Y) = 0	\Rightarrow	X(0) Y(y) = 0	\Rightarrow X(0) = 0	[Y(y) ≠ 0]
$\text{if } Y(0) = 0 \qquad \Rightarrow \qquad \qquad$	$d_{1}^{} = 0$			
$\text{if } Y(\pi) = 0 \qquad \Rightarrow \qquad \qquad$	$d_2 \sin \lambda \pi = 0$			
\Rightarrow	$d_2 \neq 0$	$sin\lambda\pi = 0$		
		2		

 $\lambda \pi = n\pi$

 $\lambda = n$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS $Y_{n}(y) = d_{n} sinny$ So ...(7) $X(0) = 0 \Rightarrow$ again $|C_1 = 0|$ So, $X_n(x) = C_n \sinh nx$ $[\lambda = n]$ Hence $U_n(x, y) = X_n(x)Y_n(y)$ $U_{n}(x, y) = C_{n} \sinh nx.d_{n} \sinh ny$ So, $U_n(x, y) = \sum_{n=1}^{\infty} u_n(x, y)$ $=\sum_{n=1}^{\infty}a_{n}\sinh nx\sinh ny$ $[a_n = c_n d_n]$ **55.(C)** Since $u_n(x, y) = \sum_n a_n \frac{e^{nx} - e^{-nx}}{2} sinny$ taking n = 1 $a \cdot \left(\frac{e^x - e^{-x}}{2}\right) \sin y = u(xy)$ $u_{x}(x, y) = \frac{a}{2}(e^{x} + e^{-x}) \sin y$ $u_{x}(\pi, y) = \frac{a}{2}(e^{\pi} + e^{-\pi})\sin y = \sin y$ \Rightarrow $a_1 = \frac{2}{e^{\pi} + e^{-\pi}}$ So $u\left(x,\frac{\pi}{2}\right) = \frac{2}{e^{\pi} + e^{-\pi}} \frac{e^{x} - e^{-x}}{2} \sin \frac{\pi}{2} = \frac{e^{x} - e^{-x}}{e^{\pi} + e^{-\pi}}$ Hence [C] is correct option.

56.(A) By the alligation rule, we find that wine containing 30% of spirit and wine containing 12% spirit should be mixed in the ration 1: 2 to produce a mixture containing 18% spirit.

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

This means that 1/3 of the butt of sherry was left; in other words, the butler drew out 2/3 of the butt.

Hence 2/3 of the butt was stolen.

57.(A) There are five prime number between 30 and 50.

They are 31, 37, 41, 43 and 47.

:. Required average =
$$\frac{(31+37+41+43+47)}{5} = \frac{199}{5} = 39.8$$

58.(D) The pattern is 8², 12², 16², 20²,

 \therefore Missing number = $24^2 = 576$.

59.(C) Pattern is .3, 3., 1.5. 1, 1.5. 15. 1.5, 2.25. 2,

 \therefore Missing number = 120.6 = 720.

- **60.(D)** The meaning of Voracious is excessively greedy and grasping and the word ravenous provides the same meaning. So the synonym of Voracious is ravenous.
- **61.(C)** The meaning of Abortive is Failing to accomplish an intended result and the word unsuccessful provides the same meaning. So the synonym of abortive is unsuccessful.
- **62.(C)** Fragile is the opposite of hardy. Amateur is the opposite of professional.
- **63.(D)** Chapters make up a book. Rooms make up a house.
- **64.(A)** Bias means A partiality that prevents objective consideration of an issue or situation. and the word bias provides the same meaning. So the synonym of bias is prejudice.
- **65.(C)** Antonym of Coincidence is incidence.

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>