GATE SCIENCE PHYSICS

SOLVED SAMPLE PAPER

* DETAILED SOLUTIONS

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

- There are total of $\mathbf{6 5}$ questions in this paper which are of multiple choice type or numerical answer type.
- Questions Q. 1 - Q. 25 carry 1 mark each. Questions Q.26Q. 55 carry 2 marks each. The 2 marks questions include two pairs of common data questions and two pairs of linked answer questions depends on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is not attempted, then the answer to the second question in the pair will not be evaluated.
- Questions Q. 56-Q.65 belong to General Aptitude (GA) section and carry a total of 15 marks. Questions Q.56Q. 60 carry 1 mark each, and questions Q. 61 - Q. 65 carry 2 marks each.
- There will be negative marking of $1 / 3$ marks for each wrong answer for 1 mark questions. For all 2 marks questions $2 / 3$ marks will be deducted for each wrong answer. However, in the case of the linked answer question pair, there will be negative marks only for wrong answer to the first question and no negative marks for wr ong answer to the second question. There is no negative marking for questions of numerical answer type.

TIME: $\quad 3$ HOURS
MAX. MARKS :
100
VPM CLASSES
For IIT-14M, JNU, GMTE, NET, NIMCET and Other Entrance Exams

Web Site whw.vpmclasses.com E-mail-vpmclasses@yahoo.com

WhatsApp: 9001894070
Website: www.vpmclasses.com

Mobile: 9001297111,9829567114
E-Mail: info@vpmclasses.com
Page 1

1. Consider the set of vectors $\frac{1}{\sqrt{2}}(1,1,0), \frac{1}{\sqrt{2}}(0,1,1$,$) and \frac{1}{\sqrt{2}}(1,0,1)$.
(A) The three vectors are orthonormal.
(B) The three vectors are linearly independent.
(C) The three vectors cannot form a basis in a three-dimensional real vector space.
(D) $\frac{1}{\sqrt{2}}(1,1,0)$ can be written as linear combination of $\frac{1}{\sqrt{2}}(0,1,1)$ and $\frac{1}{\sqrt{2}}(1,0,1)$.
2. One of the solutions of the differential equation $\frac{d^{2} y}{d x^{2}}-\frac{2 d y}{d x}+y=0$ is
(A) e^{x}
(B) $\ln x$
(C) $e^{-x^{2}}$
(D) $e^{x^{2}}$
3. Inverse Laplace transform of $\frac{s+1}{s^{2}-4}$ is
(A) $\cos 2 x+\frac{1}{2} \sin 2 x$
(B) $\cos x+\frac{1}{2} \sin x$
(C) $\cosh x+\frac{1}{2} \sinh x$
(D) $\cosh 2 x+\frac{1}{2} \sinh 2 x$
4. A planet moves ground the Sun in an elliptical orbit with semi- major axis a and time period T.T is proportional to
(A) a^{2}
(B) $a^{1 / 2}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(C) $a^{3 / 2}$
(D) a^{3}
5. x and p are two operators which satisfy $[x, p]=i$. The operators X and P are defined as
$X=x \cos \phi+p \sin \phi$ and
$Y=-x \sin \phi+p \cos \phi$,
for ϕ real. The (X, Y) equals \qquad .
6. A circle of radius 5 m lies at rest $\mathrm{x}-\mathrm{y}$ plane in the laboratory. For an observer moving with a uniform velocity along the y direction, the circle appears to be an appears to be an ellipse with an equation $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

The speed of the observer in terms of the velocity of light c is
(A) $9 \mathrm{c} / 25$
(B) $3 c / 5$
(C) $4 \mathrm{c} / 5$
(D) $16 \mathrm{c} / 25$
7. Consider an infinitely long straight cylindrical conductor of radius R with its axis along the z direction, which carries a current of 1 A uniformly distributed over its cross section. Which of the following statements is correct?
(A) $\vec{\nabla} \times \vec{B}=0$ everywhere,
(B) $\vec{\nabla} \times \vec{B}=\frac{\mu_{0}}{\pi R^{2}} \hat{z}$ everywhere
(C) $\vec{\nabla} \times \vec{B}=0$ for $r>R$,
(D) $\vec{\nabla} \times \vec{B}=\frac{\mu_{0}}{\pi R^{2}} \hat{z}$ for $r>R$
where r is the radial distance from the axis of the cylinder.
8. The specific heat of on ideal Fermi gas in 3-dimension to very low temperatures (T) varies as
(A) T
(B) $T^{3 / 2}$
(C) T^{2}
(D) T^{3}
9. When liquid oxygen is poured down close to a strong bar magnet, the oxygen stream is
(A) Repelled towards the lower field because it is diamagnetic.
(B) Attracted towards the higher field because it is diamagnetic.
(C) Repelled towards the lower field because it is paramagnetic.
(D) Attracted towards the higher field because it is paramagnetic
10. An electron propagating along the x-axis passes through a slit of width $\Delta y=1 n m$. the uncertainty in the y-component of its velocity after passing through the slit is \qquad .
11. The first order correction to the eigen function $\binom{1}{0}$ is
(A) $\binom{0}{A * /\left(E_{1}-E_{2}\right)}$
(B) $\binom{0}{1}$
(C) $\binom{A * /\left(E_{1}-E_{2}\right)}{0}$
(D) $\binom{1}{1}$
12. In a Stern-Gerlach experiment, the magnetic field is in ${ }^{+}$z direction. A particle comes out of this experiment in $|+\hat{z} \uparrow\rangle$ state. Which of the following statements is true?

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(A) The particle has a definite value of the y-component of the spin angular momentum.
(B) The particle has a definite value of the square of the spin angular momentum
(C) The particle has a definite value of the x-component of spin angular momentum
(D) The particle has definite values of x-and y-components of spin angular momentum
13. Three values of rotational energies of molecules are given below in different units. What will be the decreasing order of these molecules.

P $\quad 10 \mathrm{~cm}^{-1}$
Q $\quad 10^{-23} \mathrm{~J}$
R $\quad 10^{4} \mathrm{MHz}$
(A) P, Q, R
(B) R, Q, P
(C) R, P, Q
(D) Q, R, P
14. An avalanche effect is observed in a diode when
(A) the forward voltage is less than the breakdown voltage
(B) the reverse voltage exceeds the breakdown
(C) the reverse voltage exceeds the breakdown voltage
(D) the diode is heavily doped and forward biased
15. The output V_{0} of the ideal op-amp circuit shown in the figure is

(A) - 7 V
(B) - 5 V
(C) 5 V
(D) 7 V
16. The ratio of the sized of ${ }_{82}^{208} \mathrm{~Pb}$ and ${ }_{12}^{28} \mathrm{Mg}$ nuclei is approximately \qquad .
17. Deuteron in its ground state has an total angular momentum $\mathrm{J}=1$ and a positive parity. The corresponding orbital angular momentum L and spin combinations are
(A) $\mathrm{L}=0, \mathrm{~S}=1$ and $\mathrm{L}=2, \mathrm{~S}=0$
(B) $\mathrm{L}=0, \mathrm{~S}=1$ and $\mathrm{L}=1, \mathrm{~S}=1$
(C) $L=0, S=1$ and $L=2, S=1$
(D) $\mathrm{L}=1, \mathrm{~S}=1$ and $\mathrm{L}=2, \mathrm{~S}=1$
18. By capturing an electron ${ }_{25}^{54} \mathrm{Mn}_{29}$, transforms into ${ }_{25}^{54} \mathrm{Mr}_{30}$ releasing
(A) A neutrino
(B) An antineutrino
(C) An α-particle
(D) A positron
19. The nucleus of the atom ${ }^{9} \mathrm{Bc}_{4}$ consists of
(A) 13 up quarks and 13 down quarks
(B) 13 up quarks and 14 down quarks
(C) 14 up quarks and 13 down quarks
(D) 14 up quarks and 14 down quarks
20. If $\mathrm{A}=\mathrm{x}=\hat{\mathrm{e}}_{x} \mathrm{y} \hat{\mathrm{e}}_{x} \mathrm{y} \hat{\mathrm{e}}_{y}+\mathrm{z} \hat{\mathrm{e}}_{z}$, then $\nabla^{2} \overrightarrow{\mathrm{~A}}$ equals to \qquad .
21. Solution of $\left(e^{y}+1\right) d x+x e^{y} d y=0$ is
(A) $x e^{y}=C$
(B) $(x+1) e^{y}=C$
(C) $x e^{y}=\log C$
(D) $(x-1) e^{y}=\log C$
22. The points, where the series solution of the Legendre differential equation $\left(1-x^{2}\right)$ $\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\frac{3}{2}\left(\frac{3}{2}+1\right) y=0$ will diverge, are located at \qquad .
23. If the fourier transform $F[\delta(x-a)]=\exp (-12 \pi v a)$, then $F^{-1}(\cos 2 \pi a v)$ will correspond to
(A) $\delta(x-a)-\delta(x+a)$
(B) A constant
(C) $\frac{1}{2}[\delta(x-a)+i \delta(x+a)]$
(D) $\frac{1}{2}[\delta(x-a)+\delta(x+a)]$
24. A particle moves in a central force field $\bar{f}=-k r^{n} \hat{r}$, where k is a constant, r, the distance of the particle from the origin and is the unit vector in the direction of position vector \hat{r}. Closed stable orbits are possible for
(A) $\mathrm{n}=1$ and $\mathrm{n}=2$
(B) $\mathrm{n}=1$ and $\mathrm{n}=-1$
(C) $\mathrm{n}=2$ and $\mathrm{n}=-2$
(D) $\mathrm{n}=1$ and $\mathrm{n}=-2$
25. The space between the plates of a parallel plate capacitor is filled with two dielectric stabs of dielectric constants k_{1} and k_{2} as shown in the figure. If the capacitor is charged to a potential V , then at the interface between the two dielectrics,

(A) \vec{E} is discontinuous and \vec{D} is continuous.
(B) \vec{E} is discontinuous and \vec{D} is discontinuous.
(C) \vec{E} is continuous and \vec{D} is continuous.
(D) \vec{E} is continuous and \vec{D} is discontinuous.
26. An electromagnetic wave is propagating in free space in the z-direction. If the electric field is given by $E \cos (\omega t-k z) i$, where $\omega t=c k$, then the magnetic field is given by
(A) $\mathbf{B}=(1 / \mathrm{c}) \cos (\omega t-k z) \mathbf{j}$
(B) $\mathbf{B}=(1 / \mathrm{c}) \sin (\omega t-k z) \mathbf{j}$
(C) $\mathbf{B}=(1 / c) \cos (\omega t-k z) \mathbf{i}$
(D) $\mathbf{B}=(1 / \mathrm{c}) \cos (\omega t-k z) \mathbf{i}$
27. Boyle's law can be expressed in differential form as
(A) $d V / d P=1$
(B) $\mathrm{dV} / \mathrm{dP}=\mathrm{V} / \mathrm{P}$
(C) $d V / d P=P / V$
(D) $\mathrm{dV} / \mathrm{dP}=-\mathrm{V} / \mathrm{P}$
28. Consider black body radiation in a cavity maintained at 2000 K . If the volume of the cavity is reversibly and adiabatically increased from $10 \mathrm{~cm}^{2}$ to $640 \mathrm{~cm}^{3}$, the temperature of the cavity changes to \qquad .
29. A piece of paraffin is placed in a uniform magnetic field H_{0}. The sample contains hydrogen nuclei of mass m_{p}. Which interact only with external magnetic field. An additional oscillating
magnetic field is applied to observe resonance absorption. If g_{1} is the g-factor of the hydrogen nucleus, the frequency, at which resonance absorption takes place, is given by
(A) $\frac{3 g_{1} \mathrm{eH}_{0}}{2 \pi m_{p}}$
(B) $\frac{3 g_{1} \mathrm{eH}_{0}}{4 \pi \mathrm{~m}_{\mathrm{p}}}$
(C) $\frac{g_{1} \mathrm{eH}_{0}}{2 \pi \mathrm{~m}_{\mathrm{p}}}$
(D) $\frac{g_{1} \mathrm{eH}_{0}}{4 \pi \mathrm{~m}_{\mathrm{p}}}$
30. \hat{A} and \hat{B} are two quantum mechanical operators. If $[\hat{A}, \hat{B}]$ stands for the commutator of \hat{A} and \hat{B}, then $[[\hat{A}, \hat{B}],[\hat{B}, \hat{A}]]$ is equal to
(A) $\hat{A} \hat{B} \hat{A} \hat{B}-\hat{B} \hat{A} \hat{B} \hat{A}$
(B) $\hat{A}(\hat{A} \hat{B}-\hat{B} \hat{A})-\hat{B}(\hat{B} \hat{A}-\hat{A} \hat{B})$
(C) Zero
(D) $([\hat{A}, \hat{B}])^{2}$
31. A particle with energy E is in a time-independent double will potential as shown in the figure. Which of the following statements about the particle is NOT correct?

(A) The particle will always be in a bound state.

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(B) The probability of finding the particle in one well will be time dependent.
(C) The particle will be confined to any one of the wells
(D) The particle can tunnel from one well to the other, and back
32. The degeneracy of the spectral term ${ }^{3} \mathrm{~F}$ is \qquad .
33. Consider the following statements about molecular spectra
$\mathrm{P} \quad \mathrm{CH}_{4}$ does not given pure rotational Raman lines
Q SF_{6} could be studied by rotational Raman spectroscopy
S $\mathrm{CH}_{3} \mathrm{CH}_{3}$ shows vibrational Raman and infrared absorption lines
$\mathrm{T} \mathrm{H}_{2} \mathrm{O}_{2}$ shows pure rotational spectrum
Choose the right combination of correct statements
(A) P and Q
(B) P, R and T
(C) P, S and T
(D) Q and R
34. A bipolar junction transistor with one junction forward biased and either the collector of emitter open, operates in the
(A) Cut - off region
(B) Saturation region
(C) Pinch - off region
(D) Active region
35. The circuit shown is based on ideal operational amplifiers. It acts as a

(A) Subtractor
(B) Buffer amplifier
(C) Adder
(D) Divider
36. Nuclei which are β-emitters lie
(A) Below the line of β stability
(B) On the line of β stability
(C) Above the line of β stability
(D) Below the $\mathrm{N}=\mathrm{Z}$ line
37. In the deuterium + tritium $(d+t)$ fusion more energy is released as compared to deuterium + deuterium ($d+d$) fusion because
(A) Tritium is radioactive.
(B) More nucleons participate in fusion
(C) The Coulomb barrier is lower for the $\mathrm{d}+\mathrm{t}$ system than $\mathrm{d}+\mathrm{d}$ system.
(D) The reaction product ${ }^{4} \mathrm{He}$ is more tightly bound.
38. The basis process underlying the neutron β-decay is
(A) $d \rightarrow u+e^{-}+\bar{v}_{e}$
(B) $\mathrm{d} \rightarrow \mathrm{u}+\mathrm{e}$
(C) $\mathrm{s} \rightarrow \mathrm{u}+\mathrm{e}^{-}+\bar{v}_{\mathrm{e}}$
(D) $u \rightarrow d+e^{-}+\bar{v}_{e}$
39. Which of the following vectors is orthogonal to the vector $(a \hat{i}+b \hat{j})$, where a and $b(a \neq b)$ are constants, and \hat{i} and \hat{j} are unit orthogonal vectors?
(A) $-b \hat{i}+a \hat{j}$
(B) $-a \hat{i}+b \hat{j}$
(C) $-a \hat{i}-b \hat{j}$
(D) $-b \hat{i}-a \hat{j}$
40. Solution of the differential equation $x \frac{d y}{d x}+y=x^{4}$, with the boundary condition that $y=1$, at x $=1$, is
(A) $y=5 x^{4}-4$
(B) $y=\frac{x^{4}}{5}+\frac{4 x}{5}$
(C) $y=\frac{4 x^{4}}{5}+\frac{1}{5 x}$
(D) $y=\frac{x^{4}}{5}+\frac{4}{5 x}$
41. If then the Laplace transform of $f(x)$ is
(A) $\mathrm{s}^{-2} e^{3 x}$
(B) $s^{2} e^{-3 s}$
(C) s^{-2}
(D) $\mathrm{s}^{-2} \mathrm{e}^{-3 \mathrm{~s}}$.
42. Consider two particles with position vectors \bar{r}_{1} and \bar{r}_{2}. The force exerted by particle 2 on particle

1 is $\bar{f}\left(\bar{r}_{1}, \bar{r}_{2}\right)=\left(r_{2}-r_{1}\right)\left(\bar{r}_{2}-\bar{r}_{1}\right)$. The force is

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(A) Central and conservative
(B) Non-central and conservative
(C) Central and non-conservative
(D) Non-central and non-conservative
43. Two particles of equal mass are connected by an inextensible string of length I. One of the masses is constrained to move on the surface of a horizontal table. The string passes through a small hole in the table and the other mass is hanging below the table. The only content is that the first mass moves on the surface of the table. The number of degrees of freedom of the masses-string system is \qquad .
44. Given a wave with the dispersion relation $\omega=c k+m$ for $k>0$, which one of the following is true?
(A) The group velocity is greater than the phase velocity
(B) The group velocity is less than the phase velocity
(C) The group velocity and the phase velocity are equal
(D) There is no definite relation between the group velocity and the phase velocity
45. Match the following and choose the correct combination

Group1 (Characteristics)

P. Atomic confugration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
Q. Strongly electropositive
R. Strongly electronegative
S. Covalent bonding
(A) P-1, Q-2, R-3, S-4
(B) P-3, Q-2, R-4, S-1
(C) P-3, Q-1, R-4, S-2
(D) P-3, Q-4, R-1, S-2

Group 2 (Element)

1. Na
2. Si
3. Ar
4. Cl

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
46. The total number of accessible states of N noniteracting particles of spin $1 / 2$ is \qquad .
47. A ferromagnetic mixture of iron and copper having 75% atoms of Fe exhibits a saturation magnetization of $1.3 \times 10^{6} \mathrm{~A} \mathrm{~m}^{-1}$. Assume that the total number of atoms per unit volume is $8 \times 10^{28} \mathrm{~m}^{-3}$. The magnetic moment of an iron atom, in terms of the Bohr Magneton, is
\qquad .

COMMON DATA QUES $(48,49)$

48. The equations of motion are
(A) $\ddot{x}_{1}+\omega_{0}^{2} x_{1}=\omega_{0}^{2} \mu x_{1}, \ddot{x}_{2}+\omega_{0}^{2} x_{2}=\omega_{0}^{2} \mu x_{2}$
(B) $\ddot{x}_{1}+\omega_{0}^{2} x_{1}=\omega_{0}^{2} \mu \mathrm{x}_{2}, \ddot{x}_{2}+\omega_{0}^{2} \mathrm{x}_{2}=\omega_{0}^{2} \mu \mathrm{x}_{1}$
(C) $\ddot{x}_{1}+\omega_{0}^{2} \mathrm{x}_{1}=\omega_{0}^{2} \mu \mathrm{x}_{1}, \ddot{\mathrm{x}}_{2}+\omega_{0}^{2} \mathrm{x}_{2}=-\omega_{0}^{2} \mu \mathrm{x}_{2}$
(D) $\ddot{\mathrm{x}}_{1}+\omega_{0}^{2} \mathrm{x}_{1}=\omega_{0}^{2} \mu \mathrm{x}_{1}, \ddot{\mathrm{x}}_{2}+\omega_{0}^{2} \mathrm{x}_{2}=\omega_{0}^{2} \mu \mathrm{x}_{1}$
49. The normal modes of the system are
(A) $\omega_{0} \sqrt{\mu^{2}-1}, \omega_{0} \sqrt{\mu^{2}+1}$
(B) $\omega_{0} \sqrt{1-\mu^{2}}, \omega_{0} \sqrt{1+\mu^{2}}$
(C) $\omega_{0} \sqrt{\mu-1}, \omega_{0} \sqrt{\mu+1}$
(D) $\omega_{0} \sqrt{1-\mu}, \omega_{0} \sqrt{1+\mu}$

Common Data for Question 50,51:

One of the eigenvalues of the matrix $\left(\begin{array}{lll}2 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$ is 5 .
50. The other two eigenvalues are
(A) 0 and 0
(B) 1 and 1
(C) 1 and -1
(D) -1 and -1
51. The normalized eigenvector corresponding to the eigenvalue 5 is
(A) $\frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$
(B) $\frac{1}{\sqrt{2}}\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
(C) $\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$
(D) $\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$

Statement for Linked Answer Questions $(52,53)$

For the differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0$
52. One of the solutions is
(A) e^{x}
(B) $\ln x$
(C) $e^{-x^{2}}$
(D) $e^{x^{2}}$
53. The second linearly independent solution is
(A) e^{-x}
(B) $x e^{x}$
(C) $x^{2} e^{x}$
(D) $x^{2} e^{-x}$

Statement for Linked Answer Questions $(54,55)$

An infinitely long hollow cylinder of radius R carrying a surface charge density σ is rotated about its cylinderical axis with a constant angular speed ω.
54. The magnitude of the surface current is
(A) $\sigma R^{2} \omega$
(B) $2 \sigma \mathrm{R} \omega$
(C) $\pi \sigma \mathrm{R} \omega$
(D) $2 \pi \sigma \mathrm{R} \omega$
55. The magnitude of vector potential inside the cylinder at distance from its axis is
(A) $2 \mu_{0} \sigma R \omega r$
(B) $\mu_{0} \sigma R \omega r$
(C) $\frac{1}{2} \mu_{0} \sigma R \omega r$
(D) $\frac{1}{4} \mu_{0} \sigma R \omega r$
56. CUP : LIP :: BIRD : ?
(A) BUSH
(B) GRASS
(C) FOREST
(D) BEAK
57. Find the average of all prime numbers between 30 and 50 .
(A) 39.8
(B) 37.3
(C) 35
(D) 41
58. 64, 144, 256, 400,.....
(A) 529
(B) 484
(C) 676
(D) 576
59. Alfred buys an old scooter for Rs. 4700 and spends Rs. 800 on its repairs. If he sells the scooter for Rs. 5800, his gain percent is:
(A) $4 \frac{4}{7} \%$
(B) $5 \frac{5}{11} \%$
(C) 10%
(D) 12%
60. What is the synonym of Voracious?
(A) Tenacious
(B) Truthful
(C) Spacious
(D) Ravenous
61. What is the synonym of Abortive?
(A) Fruitful
(B) Familiar
(C) Unsuccessful
(D) Consuming
62. Fragile : Hardy
(A) awkward: clumsy
(B) orthodox: traditional
(C) amateur : professional
(D) cautious : flippant
63. Chapter: Book
(A) alcove : nook
(B) paragraph : sentence
(C) Page : rip
(D) room : house
64. What is the synonym of Bias
(A) Prejudice
(B) Tendency
(C) Resent
(D) Inclination
65. What is the Antonym of Coincidence?
(A) incidence
(B) Accident
(C) Chance
(D) Adaptation

ANSWER KEY

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Answer	B	A	A	C	1	C	C	A	D	$1.16 \times 10^{5} \mathrm{~m} / \mathrm{s}$	C	B	B	C	A	2	C	A	B	0
Question	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Answer	B	-1\&1	D	D	D	A	D	500k	C	C	C	21	C	C	A	C	D	A	A	D
Question	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Answer	D	D	2	B	C	N	1.7	B	B	C	D	A	B	A	C	D	A	D	B	D
Question	61	62	63	64	65															
Answer	C	C	D	D	C															

HINTS AND SOLUTIONS

1.(B) $\quad \alpha_{1}=\frac{1}{\sqrt{2}}(1,1,0) \quad \alpha_{2}=\frac{1}{\sqrt{2}}(0,1,1) \quad \alpha_{3}=\frac{1}{\sqrt{2}}(1,0,1)$
$\frac{\alpha_{1}}{\sqrt{2}}+0+\frac{\alpha_{3}}{\sqrt{2}}=0$
$\frac{\alpha_{1}}{\sqrt{2}}+\frac{\alpha_{2}}{\sqrt{2}}=0$
If $a_{1}=0$
then $a_{2}=0$
So, $\alpha_{1} \alpha_{2} \alpha_{3}$ are three linearly independent Vectors.
2.(A) $y=e^{x}$

$$
\begin{aligned}
& \frac{d y}{d x}=e^{x}, \text { and } \frac{d^{2} y}{d x^{2}}=e^{x} \\
& \frac{d^{2} y}{d x^{2}}-\frac{2 d y}{d x}+y=0 \\
& e^{x}-2 e^{x}+e^{x}=0
\end{aligned}
$$

3.(A) $\frac{\mathrm{s}+1}{\mathrm{~s}^{2}-4}$

$$
\frac{s}{s^{2}-4}+\frac{1}{s^{2}-4} \Rightarrow \frac{s}{s^{2}-4}+\frac{2}{2\left(s^{2}-4\right)}
$$

$\cos 2 x+1 / 2 \sin 2 x$
4.(C) Form kepler's third low

$$
\mathrm{T}^{2} \alpha \mathrm{a}^{3}
$$

So, T $\alpha \mathrm{a}^{3 / 2}$
5.1
$[X, Y]=[(x \cos \phi+p \sin \phi),(-x \sin \phi+p \cos \phi)]$
$=[x \cos \phi,-x \sin \phi]+[x \cos \phi, p \cos \phi]+[p \sin \phi,-x \sin \phi]+[p \sin \phi, p \cos \phi]$
$=\cos ^{2} \phi[x, p]+\sin ^{2} \phi[x, p]$
$=1$
6.(C) Given radius $r=5 \mathrm{~m}$.

Now in moving frame move with v in y-direction

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

So, By formula's of Length contraction

$\mathrm{L}=\mathrm{L}_{0} \sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}$

$$
\begin{aligned}
& 3=5 \sqrt{1-v^{2} / c^{2}} \\
& {\left[\frac{3}{5}\right]^{2}=1-\frac{v^{2}}{c^{2}}} \\
& \frac{v^{2}}{c^{2}}=1-\frac{9}{25}=\frac{16}{25} \\
& v=\frac{4}{5} c \quad \text { Ans.(C) }
\end{aligned}
$$

7.(C) We know for uniformly charge distribution maxwells equation

$$
\nabla \times B=\mu_{0} J
$$

and due to a infinitely long straight cylindrical conductor at $r>R$ charge is assumed zero.
So, $\nabla \times B J=0$

So, $=0$ for $r>R$
8.(A) $C_{V}=A T+B T^{3}$

Here BT^{3} term due to the thermal vibration in the lattice of the solid which take place at high temperature but at low temperature the magnitude of $A T$ is more than $B T^{3}$ term. So the $A T$ term is more dominant at low temperature $C_{V} \propto T$ at low temperature.
9.(D) Liquid oxygen has a unpaired eq in outer orbit so it is behave as a paramagnetic substance is placed in close to strong bar magnet then it is attracted towards it.
10. $\quad 1.16 \times 10^{5} \mathrm{~m} / \mathrm{s}$

By Heisenberge uncertainty principle
$\Delta p_{y} \approx \frac{\hbar}{\Delta y}$
$\Delta p_{y}=\frac{\hbar}{\mathrm{m} \Delta \mathrm{y}}=\frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \times 10^{-9} \times 2 \pi}=1.16 \times 10^{5} \mathrm{~m} / \mathrm{s}$
11.(C) $\quad 1^{\text {st }}$ order correction to $\left|\psi_{1}\right\rangle$ is $\binom{A * /\left(E_{1}-E_{2}\right)}{0}$
12.(B) From stern-Gerlach experiment magnetic moment is
$M S=-\frac{e}{m} \vec{S}$
i.e. $\quad M_{S} \propto \vec{S}$
$S \rightarrow$ Spin angular momentum
$\mathrm{S}^{2}=\mathrm{s}(\mathrm{s}+1) \hbar=\frac{3}{4} \hbar$
So, particle has a definite value of square
13.(B) $P \rightarrow \bar{v}=10 \mathrm{c} \cdot \mathrm{m}^{-1}=10^{3} \mathrm{~m}^{-1}$
$E=h c \bar{v}=6.6 \times 10^{-34} \times 3 \times 10^{8} \times 10^{3}$
$E_{p}=19.8 \times 10^{-23} \mathrm{~J}$
$Q \rightarrow E_{Q}=10^{-23} \mathrm{~J}$
$R \rightarrow v=10^{4} \times 10^{6} H z E_{R}=h v=6.6 \times 10^{-34} \times 10^{10}=6.6 \times 10^{-24} \mathrm{~J}$.
So, $E_{p}>E_{Q}>E_{R}$
14.(C) When in reversed biased, the reverse voltage exceeds the break down voltage and depletion is large then avalanche breakdown is observed.
15.(A) We know, $\quad V_{0}\left(\frac{R_{3}+R_{4}}{R_{3}}\right)\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{1}-\frac{R_{4}}{R_{3}} V_{2}$
where,

$$
=\mathrm{R}_{1}=1 \mathrm{~K} \Omega, \mathrm{R}_{2}=1 \mathrm{~K} \Omega, \mathrm{R}_{3}=1 \mathrm{~K} \Omega
$$

$$
=\mathrm{R}_{4}=1 \mathrm{~K} \Omega, \mathrm{~V}_{1}=1 \mathrm{~V}, \mathrm{~V}_{2}=2 \mathrm{~V}
$$

$$
=\left(\frac{1+5}{1}\right)\left(\frac{1}{1+1}\right) 1-\left(\frac{5}{1} \times 2\right)
$$

$$
=3-10=-7 \mathrm{~V}
$$

16. 2

Radius of nucleus, $R \propto A^{1 / 3}$
where A is mass number

$$
\begin{array}{ll}
\therefore \quad & \text { Ratio }=\left(\frac{208}{26}\right)^{1 / 3} \\
& =(8)^{1 / 3}=2 .
\end{array}
$$

17.(C) $\mathrm{J}=1$ and positive parity

Mean parity $=(-1)^{L}=+$ ve
If $L=0$ and $L=2$
so

$$
J=(L+S) \ldots . .|L-S|
$$

If $L=0, J=1$ then

$$
S=1 \text { by } J=L+S
$$

and $\mathrm{L}=2, \mathrm{~J}=1$ then by $\mathrm{J}=\mathrm{L}-\mathrm{S}$

$$
\begin{array}{rlrl}
& S=L-J=(2-1)=1 \\
\therefore & & L=0, S=1 \text { and } L=2, S=1
\end{array}
$$

18.(A) ${ }_{-1}^{0} \mathrm{e}+{ }_{25}^{54} \mathrm{Mn}_{29} \longrightarrow{ }_{24}^{54} \mathrm{Cr}_{30}+\gamma_{\mathrm{e}}$

To conserve Lepton number, a neutrino is emitted
Lepton Number L for electron $=1$
for neutrino $L=1$
19.(B) Since proton has quark structure uud and neutran has quark structure ddu.

Now ${ }^{9} \mathrm{Bc}_{4}$'s nucleus consist 4 proton and 5 neutron
so $4[\mathrm{uud}]+5[\mathrm{ddu}]$
$u[4 \times 2+5]+d[4+5 \times 2]$
$u[13]+d[14]$
ie 13 up quark. 14 down quark.
20. 0

$$
\begin{aligned}
\vec{A} & =x e \hat{x}+y \hat{e}+z e \hat{z} \\
\nabla^{2} A & =\nabla \cdot(\nabla A) \\
& =\nabla \cdot[e \hat{x}+e \hat{y}+e \hat{z}] \\
\nabla^{2} A & =0
\end{aligned}
$$

21.(B) equation is $\left(e^{y}+1\right) d x+x e^{y} d y=0$
$\Rightarrow e^{y} d x+x e^{y} d y+e^{y} d x$
$\Rightarrow d\left(x e^{y}\right)+d x=0$
integrating it
$\int d\left(x^{y}\right)+\int d x=\int 0$
$\Rightarrow \mathrm{xe}^{\mathrm{y}}+\mathrm{x}=\mathrm{C}$
$\Rightarrow \mathrm{e}^{\mathrm{y}}(\mathrm{x}+1)=\mathrm{C}$
22. $-1 \& 1$
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\frac{3}{2}\left(\frac{3}{2}+1\right) y=0$

This is legender differential equation and this is diverge when
$1-x^{2}=0$
So, $x= \pm 1$
23.(D) Fourier transform $F[\delta(x-a)]=\exp (-i 2 \pi v a) \ldots$ (1)

Similarly $F[\delta(x+a)]=\exp (+i 2 \pi v a)$
$\because \mathrm{F}^{-1}[\cos 2 \pi \mathrm{av}]=\mathrm{F}^{-1}\left[\frac{\mathrm{e}^{\mathrm{i} \text { 2nav }}+\mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{av}}}{2}\right]$
$\mathrm{eq}(1)+\mathrm{eq}(2) \Rightarrow \mathrm{F}\left[\frac{\delta(\mathrm{x}-\mathrm{a})+\delta(\mathrm{x}+\mathrm{a})}{2}\right]=\frac{1}{2}\left[\mathrm{e}^{+\mathrm{i} 2 \pi \mathrm{va}}+\mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{va}}\right]$
Using eq ${ }^{n}(3) \quad F\left[\frac{1}{2} \delta(x+a)+\delta(x-a)\right]=\cos (2 \pi a v)$
So, taking inverse fourier transform (F^{-1}) both side

$$
\frac{1}{2}[\delta(\mathrm{x}+\mathrm{a})+\delta(\mathrm{x}-\mathrm{a})]=\mathrm{F}^{-1}[\cos (2 \pi \mathrm{av})]
$$

24.(D) $\bar{f}=-K r^{n} \hat{r}$
$\mathrm{n}=1$ then
When $\bar{f}=\hat{r}-\mathrm{Kr}$
then it also represent force at Closed Stable orbits
$n=-2 \bar{f}=-\frac{k}{r^{2}} \hat{r}$
it is coulomb attractive force
25.(D) form boundary condition at interface between two dielectric
$D_{2} n-D_{i r}=\sigma$
and $E_{1} t=E_{2} t$
i.e normal component of D is discontinuous and tangential component of is Continuous.
26.(A) In E.M wave electric field E and magnetic field B is perpendicular to each other So, direction of Magnetic field is along .
$E=B c$
So, $B=\frac{E}{C}=\frac{1}{C} \cos (\omega t-k Z) \hat{J}$
$B=\frac{1}{c} \cos (\omega t-k Z) \hat{J}$
27.(D) Ideal gas equation
$\mathrm{Pv}=\mathrm{nRT}$
$V=\frac{n r T}{P}$
$\frac{\partial v}{\partial P}=\frac{-n R T}{P \cdot P}$
$\frac{\partial \mathbf{v}}{\partial \mathrm{P}}=\frac{-\mathrm{V}}{\mathrm{P}}$
Ans.(D)
28. 500 K
$\mathrm{TV}^{\top-1}=$ constant
For $r=\frac{4}{3}=1.66$
$\mathrm{TV}^{1 / 3}=$ constant
$\Rightarrow \quad \mathrm{T}_{1} \mathrm{~V}_{1}^{1 / 3}=\mathrm{T}_{2} \mathrm{~V}_{2}^{1 / 3}$
$\Rightarrow \mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)^{1 / 3}=2000 \times\left(\frac{10}{640}\right)^{1 / 3}=2000 \times\left(\frac{1}{64}\right)^{1 / 3}=2000 \times \frac{1}{4}=500 \mathrm{~K}$.
29.(C) When Paraffin is placed in uniform magnetic field H_{0},
then $\quad m_{p} \omega_{0}^{2} r=g_{1} H_{0} e v$

$$
\begin{aligned}
& m_{p} \omega_{0}^{2} r=g_{1} H_{0} e\left(r \omega_{0}\right) \\
& \omega_{0}=\frac{g_{1} H_{0} e}{m_{p}} \\
& 2 \pi f_{0}=\frac{g_{1} H_{0} e}{m_{p}} \quad \Rightarrow f_{0}=\frac{g_{1} H_{0} e}{2 \pi m_{p}}
\end{aligned}
$$

30.(C) $\quad[(\hat{A} \hat{B}-\hat{B} \hat{A}),(\hat{B} \hat{A})]=[\hat{A} \hat{B},(\hat{B} \hat{A}-\hat{A} \hat{B})]-[\hat{B} \hat{A},(\hat{B} \hat{A}-\hat{A} \hat{B})]$
$=[\hat{A} \hat{B}, \hat{B} \hat{A}]+[\hat{B} \hat{A}, \hat{A} \hat{B}]=[\hat{A} \hat{B}, \hat{B} \hat{A}]-[\hat{A} \hat{B}, \hat{B} \hat{A}]=0$
31.(C) In double potential well particle is always bound in well and particle can tunnel from one well to other well and back also and cannot be confined into any one of wells.
32.

21
$\because \quad{ }^{3}$ F multiplicity $(2 S+1)=3 \Rightarrow S=1$
For F, the L value $L=3$
and $\mathrm{J}=|\mathrm{L}-\mathrm{S}|, \quad \ldots .(\mathrm{L}+\mathrm{S})$
$\Rightarrow \quad J=2,3,4$
$\Rightarrow \quad{ }^{3} \mathrm{~F}_{2,3,4}$
$\Rightarrow \quad{ }^{3} F_{2},{ }^{3} F_{3}$ and ${ }^{3} F_{4}$
Each J level is still $(2 \mathrm{~J}+1)$ fold degenerate
$J=2, \quad(2 J+1)=5$
$J=3, \quad(2 J+1)=7$
$J=4, \quad(2 J+1)=9$,
Total degeneracy of ${ }^{3} \mathrm{~F}$ term $=21$
33.(C) CH_{4} is a symmetrical molecules so does not give pure rotational Roman lines and $\mathrm{H}_{2} \mathrm{O}_{2}$ have bending structure so have pure rotational spectrum. $\mathrm{CH}_{3} \mathrm{CH}_{3}$ shows vibrational Raman and infrared absorption lines.
34.(C)

Pinch of region
35.(A)

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

At point A,
${ }^{\mathrm{st}}$ step is behave as inverting amplifier

$$
\begin{align*}
& \left(V_{\text {out }}\right)_{A}=-\frac{R_{f}}{R_{\text {in }}} V_{\text {in }}=-V_{1} \\
& \left(V_{\text {out }}\right)_{A}=-V_{1} \tag{1}
\end{align*}
$$

Now
So, $\left(\mathrm{V}_{\text {out }}\right)_{\mathrm{B}}=-\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{i}}}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$

$$
\left(\mathrm{V}_{\mathrm{ou}}\right)_{\mathrm{B}}=\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)
$$

So out voltage at ' B ' is the difference of two voltage V_{1} and V_{2}. So it is behave as a "Subtractor".

36.(C) $\quad{ }_{2} X_{N}^{A} \rightarrow{ }_{z+1} X_{N-1}^{A}+{ }_{-1} e_{1}^{0}\left(\beta^{-}\right)$

So, $\mathrm{Z} \rightarrow \mathrm{Z}+1 \quad$ and $\mathrm{N} \rightarrow \mathrm{N}-1$
So, this new Nuclei is lie above the line of β - stability.
37.(D) $\mathrm{d}-{ }_{1} \mathrm{H}^{2} \quad \mathrm{t}={ }_{1} \mathrm{H}^{3}$

$$
{ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{3} \rightarrow 2 \mathrm{He}^{4}+{ }_{0} \mathrm{n}^{\prime}
$$

more stable

$$
{ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{1} \mathrm{H}^{3}+{ }_{1} \mathrm{P}^{1}
$$

Because the reaction product $2 \mathrm{He}^{4}$ is more tightly bound so more energy is released in the fusion of (" $d+t$ ") as compared to ($d+d$) fusion.
38.(A) $d \longrightarrow u+e^{-}+v_{e}^{-}$

This process is show the β-decay $v_{\mathrm{e}}^{-} \rightarrow$ anti neutrino
39.(A) If $\vec{A} \cdot \vec{B}=0$
then \vec{A} is orthogonal to \vec{B}
Given $\vec{A}=a \hat{i}+b \hat{j}$
If $\vec{B}=-b+a \hat{j}$
then $\vec{A} \cdot \vec{B}=[a \hat{i}+b \hat{j}] \cdot[-b \hat{i}+a \hat{j}]$

$$
=-a b+b a
$$

$$
\vec{A} \cdot \vec{B}=0
$$

So, \vec{B} is orthogonal to \vec{A}
40.(D) $x \frac{d y}{d x}+y=x^{4}$

$$
\begin{aligned}
& \frac{d y}{d x}+\frac{y}{x}=x^{3} \quad P=\frac{1}{x} \\
& I . F=e^{\int \mathrm{d} d x} \\
& \\
& =e^{\int \frac{1}{x} d x}=e^{\log x}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{I} . \mathrm{F}=\mathrm{x} \tag{1}
\end{equation*}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
So, $y \times$ I.F $=\int \operatorname{IIF}\left(x^{3}\right) d x=\int x \times x^{3} d x+c=\int x^{4} d x+c$
$y \times x=\frac{x^{5}}{5}+c$
$y=\frac{x^{4}}{5}+\frac{c}{x}$
at $x=1 y=1$

So, $1=\frac{1}{5}+c$

$$
\begin{array}{cl}
c=1-\frac{1}{5}=\frac{4}{5} & c=\frac{4}{5} \\
& y=\frac{x^{4}}{5}+\frac{4}{5 x}
\end{array}
$$

41.(D) $f(x)=\left\{\begin{array}{cc}0 & \text { for } x<3 \\ x-3 & \text { for } x \geq 3\end{array}\right.$
we know Laplace transformation of $f(x)$
$L(f(x))=\int_{3}^{\infty} f(x) f^{-s x} d x=\int_{3}^{\infty}(x-3) e^{-s x} d x=\int_{3}^{\infty} x e^{-s x} d x-3 \int_{3}^{\infty} e^{-s x} d x$
$\left[-\frac{x}{5} e^{-s x}\right]_{3}^{\infty}-\frac{1}{s^{2}}\left[e^{-s x}\right]_{3}^{\infty}+\frac{3}{5}\left[e^{-s x}\right]_{3}^{\infty}+\frac{3}{7} e^{3 s}+\frac{1}{s^{2}} e^{-35}-\frac{3}{7} / e^{35}$

$$
L(f(x))=\frac{1}{S^{2}} e^{-3 s}
$$

42.(D) Force $\bar{f}\left(\left(\bar{r}_{1}, \bar{r}_{2}\right)=\left(\dot{r}_{2}-\dot{r}_{1}\right)\left(\bar{r}_{2}-\bar{r}_{1}\right)\right)$

Becaus force is velocity (\dot{r}) dependent So, it has non-central part and which is nonconservative
43. 2

Two particles needs two coordinates
$\left(x_{1} y_{1}\right)$ and $\left(x_{2} y_{2}\right)$

WhatsApp: 9001894070
Website: www.vpmclasses.com

Mobile: 9001297111,9829567114
E-Mail: info@vpmclasses.com
i.e. 4 coordinates But there are two constraint so
$2 \times 2-2=2$
So, degree of freedom is ' 2 '
44.(B). $\quad \omega=c k+\eta$
$\mathrm{V}_{\text {phase }}=\frac{\omega}{\mathrm{k}}=\mathrm{c}+\frac{\eta}{\mathrm{k}}$
$\mathrm{V}_{\text {group }}=\frac{\mathrm{d} \omega}{\mathrm{dk}}=\mathrm{c}$
So, the group velocity is less than the phase velocity
45.(C) $\quad \mathrm{P} \rightarrow$ Atomic configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}-\operatorname{Ar}(3)$
$\mathrm{Q} \rightarrow$ strongly electropositive - Na (1)
$\mathrm{R} \rightarrow$ strongly electronegative $-\mathrm{cl}(4)$
$\mathrm{S} \rightarrow$ Covalent bonding - SI (2)
P-3, Q-1, R-4, 5-2
46. $\quad \mathrm{N}$

Since the particle of spin $\frac{1}{2}$ are fermious \& obey Pauli exclusion principle so, not more that
1 particle can be placed in any one state. Hence., number of accessible states $=\mathrm{N}$
47. $\quad 1.7$

We know magnetization vector $=\frac{\text { Magnetic moment }}{\text { Volume }}$
\because We know concentration of atom per unit volume
$\Rightarrow \mathrm{M}=$ Magnetic moment x n
Magnetic moment of iron $=\frac{M}{n}=\frac{1.3 \times 10^{6}}{8 \times 10^{28}}$

$$
\mathrm{M}=.1625 \times 10^{-22} \mathrm{Amp} \mathrm{~m}^{2}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

So, $M=\frac{.1625 \times 10^{-22} \times \mu_{B}}{9.27 \times 10^{-24}}$

$$
\mathrm{M}=1.7 \mu_{\mathrm{B}}
$$

48.(B) $L=\frac{1}{2} M\left(X_{1}^{2}+X_{2}^{2}\right)-\frac{1}{2} M \omega_{0}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)+m \omega_{0}^{2} \mu x, x_{2}$

$$
\begin{aligned}
\therefore \quad \frac{\partial L}{\partial x_{2}} & =-m \omega_{0}^{2} x_{2}+m \omega_{0}^{2} \mu x_{1} \\
\frac{\partial L}{\partial \dot{x}_{1}} & =m \dot{x}_{1} \\
\frac{\partial L}{\partial \dot{x}_{2}} & =m \dot{x}_{2}
\end{aligned}
$$

So, Lagrangian equarion are

$$
\begin{gathered}
\frac{\partial}{\partial \mathrm{t}}\left[\frac{\partial \mathrm{~L}}{\partial \dot{\mathrm{x}}_{1}}\right]-\frac{\partial \mathrm{L}}{\partial \mathrm{x}_{1}}=0 \mathrm{mx} \mathrm{x}_{2}+\mathrm{m} \omega_{0}^{2} \mathrm{x}_{1}-\mathrm{m} \omega_{0}^{2} \mathrm{x}_{1}-\mathrm{m} \omega_{0}^{2} \mathrm{x}_{1}-\mathrm{m} \omega_{0}^{2} \mu \mathrm{x}_{2}=0 \\
\dot{\mathrm{x}}_{1}+\omega_{0}^{2} \mathrm{x}_{1}=\omega_{0}^{2} \mu \mathrm{x}_{2}
\end{gathered}
$$

Similarly

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\frac{\partial L}{\partial x_{2}}\right)-\frac{\partial L}{\partial x_{2}}=0 \\
& m \dot{x}_{2}^{\square}+m \omega_{0}^{2} x_{2}-m \omega_{0}^{2} \mu x_{1}=0 \\
& \dot{x}_{2}^{\square}+\omega_{0}^{2} x_{2}=\omega_{0}^{2} \mu x_{1}
\end{aligned}
$$

49.(B) Given $T=\frac{1}{2} m\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}\right)$

$$
\begin{aligned}
& \mathrm{T}=\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right] \\
\therefore \quad & V=\frac{1}{2} m \omega_{0}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)-\frac{1}{2}\left(2 m \omega_{0}^{2} \mu x_{1} x_{2}\right)
\end{aligned}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& V=\left|\begin{array}{cc}
m \omega_{0}^{2} & -m \omega_{0}^{2} \mu \\
-m_{0}^{2} \omega \mu & m \omega_{0}^{2}
\end{array}\right| \\
\therefore \quad & \left|v-\omega^{2} T\right|=0 \\
& \left|\begin{array}{lc}
m \omega_{0}^{2}-\omega^{2} m & -m \omega_{0}^{2} \mu \\
-m \omega_{0}^{2} \mu & m \omega_{0}^{2}-\omega^{2} m
\end{array}\right|=0 \\
& \left(m \omega_{0}^{2}-\omega^{2} m\right)^{2}-\left(m \omega_{0}^{2} \mu\right)^{2}=0 \\
& \left(\omega_{0}^{2}-\omega^{2}+\omega_{0}^{2} \mu\right)\left(\omega_{0}^{2}-\omega^{2}-\omega_{0}^{2} \mu\right)=0 \\
& \omega_{0}^{2}(1-+\mu)=\omega^{2} \\
& \quad \omega_{0}^{2}(1-4)=\omega^{2} \\
& \quad \omega= \pm \omega_{0} \sqrt{1-\mu}
\end{aligned}
$$

So, $\quad \omega=\omega_{0} \sqrt{1+\mu}, \omega_{0} \sqrt{1-\mu}$
50.(C). $\operatorname{det} A=-5, \quad \operatorname{Tr} A=5$.

$$
\lambda_{1}=5 ; \lambda_{2}=1 ; \lambda_{3}=-1
$$

51.(D). $\left(\begin{array}{ccc}2-5 & 3 & 0 \\ 3 & 2-5 & 0 \\ 0 & 0 & 1-5\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$

$$
\left.\begin{array}{rl}
\begin{array}{r}
-3 x_{1}+3 x_{2}
\end{array}=0 \\
3 x_{1}-3 x_{2} & =0
\end{array}\right\} x_{1}=x_{2} \quad l \begin{aligned}
& \\
& 3 x_{1}-3 x_{2}=0 \\
& -4 x_{3}=0, \quad x_{3}=0
\end{aligned}
$$

$$
X_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

52.(A) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0$

$$
D^{2}-2 D+1=0
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
$D^{2}-D-D+1=0$
$D[D-1]-[D-1]=0$
$\mathrm{D}=1,1$
$y=a e^{x}$
53.(B) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0$

If $y=x e^{x}$
$\frac{d y}{d x}=e^{x}+x e^{x}$
$\frac{d y^{2}}{d x^{2}}=2 e^{x}+x e^{x}$
So from eqn(1) $2 e^{x}+e^{x}-x e^{x}$
$\Rightarrow 2 \mathrm{e}^{\mathrm{x}}+2 \mathrm{x} \mathrm{e}^{\mathrm{x}}-2 \mathrm{e}^{\mathrm{x}}-2 \mathrm{xe} \mathrm{e}^{\mathrm{x}}$
$=0$

So the second linearly independent sol is xe^{x}.
54.(A) $\|$ B. $d t=\mu_{0} I$
$B .2 \pi \mathrm{R}=\mu_{0} \frac{\sigma \mathrm{dA}}{\mathrm{dt}} \quad\left[\because \mathrm{I}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{\mathrm{d}(\sigma \mathrm{A})}{\mathrm{dt}}=\frac{\sigma \mathrm{dA}}{\mathrm{dt}}\right]$
Surface current, $\mathrm{Js}=\mathrm{M}=\frac{\mathrm{B}}{\mu_{0}}=\frac{\sigma}{2 \pi R} \frac{\mathrm{dA}}{\mathrm{dt}}$

Now,

$$
\mathrm{A}=\pi \mathrm{R}^{2}
$$

$$
\therefore \quad \frac{d \mathrm{~A}}{\mathrm{dt}}=2 \pi \mathrm{R} \frac{\mathrm{dR}}{\mathrm{dt}}=2 \pi \mathrm{R} 2 \omega
$$

$$
\therefore \quad J_{s}=M=\frac{\sigma}{2 \pi R} \times 2 \pi R^{2} \omega=\sigma R^{2} \omega
$$

55.(C) We know,

$$
A=\frac{\mu_{0}}{4 \pi} \int \frac{J_{0} \cdot d A}{r}
$$

where,

$$
\mathrm{A}=\pi \mathrm{r}^{2},
$$

$$
\Rightarrow \quad \mathrm{dA}=2 \pi \mathrm{rdr}
$$

$$
A=\frac{\mu_{0}}{4 \pi} \sigma R \omega \int \frac{2 \pi r d r}{r}
$$

$$
=\frac{\mu_{0}}{4 \pi} \sigma R \omega \int \mathrm{dr}
$$

$$
=\frac{\mu_{0}}{2} \sigma R \omega r
$$

56.(D) Explanation: Cup is used to drink something with the help of lips. similarly, Birds collects grass with the help of beak to make her nest.
57.(A) There are five prime number between 30 and 50.

They are 31, 37, 41, 43 and 47.
$\therefore \quad$ Required average $=\frac{(31+37+41+43+47)}{5}=\frac{199}{5}=39.8$
58.(D) The pattern is $8^{2}, 12^{2}, 16^{2}, 20^{2}$,
\therefore Missing number $=24^{2}=576$.
59.(B) Explanation:

Cost Price (C.P.) = Rs. $(4700+800)=$ Rs. 5500.
Selling Price (S.P.) = Rs. 5800.
Gain $=($ S.P. $)-($ C.P. $)=$ Rs. $(5800-5500)=$ Rs. 300.
Gain \% $\left(\frac{300}{5500} \times 100\right) \%=5 \frac{5}{11}$
60.(D) The meaning of Voracious is excessively greedy and grasping and the word ravenous provides the same meaning. So the synonym of Voracious is ravenous.
61.(C) The meaning of Abortive is Failing to accomplish an intended result and the word unsuccessful provides the same meaning. So the synonym of abortive is unsuccessful.
62.(C) Fragile is the opposite of hardy. Amateur is the opposite of professional.
63.(D) Chapters make up a book. Rooms make up a house.
64.(A) Bias means - A partiality that prevents objective consideration of an issue or situation. and the word bias provides the same meaning. So the synonym of bias is prejudice.
65.(C) Antonym of Coincidence is incidence.

